摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Lanthanum hexaboride | 12008-21-8

中文名称
——
中文别名
——
英文名称
Lanthanum hexaboride
英文别名
lanthanum;2,3,5,6-tetrabora-1,4-diboranuidapentacyclo[3.1.0.01,3.02,4.04,6]hexane
Lanthanum hexaboride化学式
CAS
12008-21-8
化学式
B6La-2
mdl
——
分子量
203.8
InChiKey
IBDHMAYMLSYGAK-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    2210 °C
  • 密度:
    2.61 g/cm3 at 25 °C (lit.)

计算性质

  • 辛醇/水分配系数(LogP):
    -2.28
  • 重原子数:
    7
  • 可旋转键数:
    0
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    2

安全信息

  • TSCA:
    Yes
  • WGK Germany:
    3

SDS

SDS:d6cad298c76e9927db031e90b44e8810
查看

制备方法与用途

概述

六硼化镧是一种由稀土元素镧与非金属元素硼形成的稀土硼化物,分子式为LaB₆。其密度为4.7 g/cm³,质硬而脆。从化学成分上看,它属于无机非金属材料;从材料特性上来看,它是无氧类金属难熔化合物;在用途上,则是一种信息材料。

常温下,六硼化镧产品有三种形态:粉末状、多晶体和单晶体,各有不同的应用价值。

简介

六硼化镧(lanthanum hexaboride, LaB₆)的晶体结构为CsCl结构,属于简单立方晶系。它一般呈紫色,由于La:B比例不同而可能呈现黑色或青色等颜色。LaB₆具有许多优越性能,包括电子发射强度、抗辐射性、高温化学稳定性等,因此在军事领域以及众多高科技领域有广泛的应用,如雷达、航空航天、电子工业、仪器仪表、医疗器械、家电和冶金等行业。

在制作大功率电子管、磁控管、电子束、离子束、加速器阴极等器件时,单晶六硼化镧是首选的材料。其晶体结构模型如图1所示,与其他稀土元素六硼化物一样,LaB₆属于立方晶系CsCl型,由较大的镧原子构成简单立方体,较小的硼原子则在晶格中形成八面体。

图1:LaB₆的晶体结构模型

合成方法

现在六硼化镧的制备通常采用碳化硼热还原法制备。其反应式为:La₂O₃ + 3B₄C → 2LaB₆ + 3CO;由于该反应引入了碳化硼作为反应原料,产品中碳含量难以控制,且因碳化硼硬度高、粒度大,容易产生混料不均匀现象,使产品化学成分发生偏离。

另一种方法是元素合成法,采用高纯硼粉和金属镧作为原料,得到高纯产品。此方法合成的纯度较高,工艺易控,但两种原料价格昂贵,使其成本很高。

自蔓延高温合成法使用镁粉、氧化镧、三氧化二硼作为原料。这是所有方法中唯一不需要使用高温设备的方法,能源成本较低,但缺点是后处理工序较繁琐,产品纯度稍低,但在粒度方面有优势。

卤化物硼热还原法则使用氯化镧和硼粉为反应原料,得到产物单一且易于处理,可以相对容易地获得较高的纯度。高纯六硼化镧的成功研制可以为我国应用高纯硼化物的领域提供高质量稳定的产品,减少对外产品的依赖。该工艺在生产过程中受限于硼粉价格昂贵,但在一定程度上优于现有合成工艺。

发电性能

LaB₆具有较低的逸出功,是一种优秀的阴极材料,特别适用于高温、大电流密度的器件。基于其独特结构,使其具有良好的电子活性,在加热时晶胞中扩散出来的金属镧原子可以立即补充表面蒸发掉的金属镧原子,使LaB₆表面始终保持良好的阴极活性。由于LaB₆的高电导率、良好的热稳定性及化学稳定性、低逸出功和优异的阴极表面活性等特点,使其在阴极发射中得到广泛应用,成为理想的热阴极材料。

应用

六硼化镧纳米粉末在近红外波段具有吸收和散射作用,可用于制作透明隔热玻璃。LaB₆SiO₂/Fe₃O₄复合纳米颗粒综合了不同纳米颗粒的性能,具有顺磁性和近红外光热转换特性,适用于捕捉大肠杆菌与金黄色酿脓葡萄球菌;酸催化下制备的LaB₆纳米颗粒均匀分散在SiO₂薄膜中,具有近红外吸收特性,在传感器、微电子机械和光学薄膜等领域中有广泛应用。

参考文献
  1. 仪修超. 六硼化镧纳米粉末制备技术的研究[D]. 电子科技大学,2015.
  2. 姜岩, 王颖. 硼热还原法制备六硼化镧粉末[J]. 辽宁化工,2010,39(09):904-905+908.
  3. 朱炳金. 六硼化镧薄膜的制备及发射特性的研究[D]. 电子科技大学,2008.