摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Hex-3-en-ozonid | 873-72-3

中文名称
——
中文别名
——
英文名称
Hex-3-en-ozonid
英文别名
3-Hexen-ozonid;Diethyl-1,2,4-trioxolane;3,5-diethyl-1,2,4-trioxolane
Hex-3-en-ozonid化学式
CAS
873-72-3
化学式
C6H12O3
mdl
——
分子量
132.159
InChiKey
UZRMHUGAHORRNA-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.9
  • 重原子数:
    9
  • 可旋转键数:
    2
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    27.7
  • 氢给体数:
    0
  • 氢受体数:
    3

反应信息

  • 作为产物:
    描述:
    正-3-己烯臭氧 作用下, 以 正己烷 为溶剂, 生成 Hex-3-en-ozonid
    参考文献:
    名称:
    The ozonolysis of tetramethylethylene. Concentration and temperature effects
    摘要:
    The products of the ozonolysis of tetramethylethylene in hexane or methylene chloride are remarkably dependent on the concentration of tetramethylethylene. Ozonolysis in neat tetramethylethylene gives mostly tetramethylethylene epoxide as product. As the concentration of tetramethylethylene is reduced, more acetone diperoxide is formed until it becomes the major product. The reaction also produces 3-hydroperoxy-2,3-dimethyl-1-butene. The product distribution is also quite dependent on reaction temperature. At a given concentration of the alkene the epoxide yield decreases as the temperature is lowered. Simultaneously the acetone diperoxide yield increases with lower temperature. The results are explained by postulating that energy-rich acetone oxide can be partially converted to dimethyldioxirane which is primarily responsible for the epoxidation. The proposed reaction scheme also has acetone oxide dimerize in a stepwise manner to give an intermediate which can either close to give diperoxide or lose singlet oxygen. The singlet oxygen would then react with tetramethylethylene to give the hydroperoxide.
    DOI:
    10.1021/jo00054a010
点击查看最新优质反应信息

文献信息

  • Formation of secondary ozonides in the gas phase low-temperature ozonation of primary and secondary alkenes
    作者:Radek Fajgar、Josef Vítek、Yehuda Haas、Josef Pola
    DOI:10.1039/a807208f
    日期:——
    The gas-phase ozonation of a series of alkenes RCHCH2 (R = Et, Hex), trans-RHCCHR (R = Me, Et, Pri) and Me2CCMe2 at –40 to 20 °C, and that of ethene H2CCH2 at –120 to 0 °C at 10–4 v/v concentrations in N2 at atmospheric pressure have been studied. Using complementary product analysis by means of GC–FTIR and GC–MS techniques, we present conclusive evidence for the formation of secondary alkene ozonides as high-yield products in all instances except Me2CCMe2. It is shown that the stereoselectivity for the conversion of trans-RHCCHR (R = Me, Et, Pri) to trans-secondary ozonides in the gas phase is similar to that observed earlier in solution, and that the yields of secondary ozonides from RHCCH2, but not those from RHCCHR, significantly decrease with increasing temperature.
    在-40至20摄氏度下,一系列烯烃(RCHCH2,其中R=Et, Hex),反式-RHCCHR(R=Me, Et, Pri)以及Me2CCMe2的气相臭氧化反应,以及在-120至0摄氏度下乙烯H2CCH2的臭氧化反应,在氮气中体积分数为10-4的条件下、常压下进行了研究。通过GC-FTIR和GC-MS技术进行的补充产物分析,我们提供了确凿证据,表明在除Me2CCMe2外的所有情况下,次级烯烃臭氧化物都是高产率的主要产物。研究表明,反式-RHCCHR(R=Me, Et, Pri)在气相中转化为反式次级臭氧化物的立体选择性,与先前在溶液中观察到的相似,并且从RHCCH2(而非RHCCHR)生成的次级臭氧化物的产率随着温度的升高显著下降。
  • Criegee et al., Chemische Berichte, 1955, vol. 88, p. 1878,1888
    作者:Criegee et al.
    DOI:——
    日期:——
  • Low-temperature ozonation of alkenes adsorbed on silica gel
    作者:Ivan E. DenBesten、Thomas H. Kinstle
    DOI:10.1021/ja00538a073
    日期:1980.8
  • US9162113B2
    申请人:——
    公开号:US9162113B2
    公开(公告)日:2015-10-20
查看更多

同类化合物

青蒿氧烷 甲基3-甲基-1,2,4-三氧杂环戊烷-3-羧酸酯 烯丙基苯臭氧化物 5-乙酰基-3,5-二甲基-1,2,4-三氧杂环戊烷-3-甲腈 3-苯基-1,2,5-三氧杂螺[5.5]十一烷 3-苯基-1,2,4-三氧杂螺[5.4]癸烷 3-甲基-3-苯基-1,2,4-三氧杂螺[5.4]癸烷 3,5-二苯基-1,2,4-三氧杂环戊烷 3,3-二丁基-1,2,4-三氧杂螺[5.4]癸烷 1-异丙基环戊烯-1臭氧 1-异丙基-4-甲基-2,3,7-三氧杂双环[2.2.1]庚烷 1-(5-甲氧基-3-甲基-1,2,4-三四氢呋喃-3-基)乙酮 1-(5-甲基-1,2,4-三四氢呋喃-3-基)乙酮 1-(5,5-二甲基-1,2,4-三四氢呋喃-3-基)乙酮 1-(3,5,5-三甲基-1,2,4-三四氢呋喃-3-基)乙酮 1,2,4-三噁戊环,3-(3-氯-3-乙基-2-甲基噁丙环基)-3-甲基- 1,2,4-三噁戊环,3-(1-氯乙烯基)- (3R,5R)-3-异丙基-5-丙基-1,2,4-三氧杂环戊烷 1,3-Dioxoldioxetan (3R,5R)-3,5-dimethyl-1,2,4-trioxolane (4aR,7aR,11aS,11bS)-6-Ethoxy-hexahydro-1,3,5,7,9,11-hexaoxa-6-phospha-dibenzo[a,c]cycloheptene O2,O4;O3,O5-dimethanediyl-1,6-dideoxy-D-glucitol 2α-Phenyl-bicyclo<3.3.1>nonan-2β.3β-oxid 5,14,15-Trioxadispiro<3.1.7.2>pentadecan 1,4-ditert-butyl-2,3,7-trioxabicyclo[2.2.1]hept-5-ene meso-Tricyclo<7,4,0,02,7>-1-tridecenozonid 3-heptyl-5-methoxy-5-(trifluoromethyl)-1,2,4-trioxolane 2,2-diethyl-5-(2-vinyl-buta-1,3-dienyl)-[1,3]dioxolane-4-carbaldehyde 3,3-Dicyclopropyl-1,2,4-trioxolan 3-cyclohexyl-5-methoxy-5-(trifluoromethyl)-1,2,4-trioxolane 1,4,4-Trimethyl-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane 1-Methyl-4-pentyl-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane Propylenozonid-d(1) acrolein (R,R)-1,2-dicyclohexylethylene acetal 3-methoxy-1-tert-butyl-1,2,4,5-tetraoxaspiro[5.5]undecane trans-3.5-Bis-chlormethyl-1.2.4-trioxolan Ozonid des Aethylidenadamantans(5) 3-tert-Butyl-3-(2-tert-butyl-2-oxiranyl)-1,2,4-trioxolan Ozonid des Neopentylidenadamantans(6) cis-3-ethoxy-3-(trifluoromethyl)-5-phenyl-1,2,4-trioxolane (1R,2S,3R,4R,5R)-1,7-anhydro-1-(hydroxymethyl)-2,3,4-tri-O-(methoxymethyl)-5-methyl-1,2,3,4-cyclohexanetetraol 5,5'-diphenyl-3,3'-bi-1,2,4-trioxolane 5-heptyl-5'-phenyl-3,3'-bi-1,2,4-trioxolane Ozonid des Methyladamantans(4) cis-3,5-dimethyl-3,5-diethyl-1,2,4-trioxolane 2-[[3,5-diethyl-2,2-di(propan-2-yloxy)-1,4,2λ5-dioxaphospholan-2-yl]methyl]-3,5-diethyl-2,2-di(propan-2-yloxy)-1,4,2λ5-dioxaphospholane cis-3,5-dimethyl-3,5-diethyl-1,2,4-trioxolane trans-3-ethoxy-3-(trifluoromethyl)-5-phenyl-1,2,4-trioxolane