摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 1261501-26-1

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
1261501-26-1
化学式
C88H68Cl2Ir2N8
mdl
——
分子量
1692.91
InChiKey
BCKPBNMPCCRUCS-UHFFFAOYSA-L
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    乙酰丙酮 在 tetrabutylammonium hydroxide 作用下, 以 二氯甲烷 为溶剂, 以48%的产率得到Ir(4-methyl-1,2,5-triphenylimidazole(1-))2(acetylacetonate)
    参考文献:
    名称:
    Cyclometalated Iridium(III) Complexes Based on Phenyl-Imidazole Ligand
    摘要:
    Phenyl-imidazole-based ligands with various substitution patterns have been used as the main ligand for heteroleptic bis-cyclometalated Iridium complexes. Two series of complexes have been prepared and their photophysical and electrochemical properties were studied. The phosphorescence emission maxima range from about 490 to 590 nm, that is, from greenish-blue to orange. The first series is of the form Ir(L)(2)(acac) (L: a phenyl-imidazole based ligand; acac: acetylacetonate). In the first complex, la, L is 1,4,5-trimethyl-2-phenyl-1H-imidazole. Then, methyl groups are replaced with phenyl groups and chlorines are grafted on the cyclometalated phenyl ring. The second series is of the form Ir(4,5-dimethyl-1,2-diphenyl-1H-imidazole)(2)(L-a) (L-a: ancillary ligand being acetylacetonate, acac, N,N-dimethylamir o-picolinate, NPic, picolinate, Pic, or 2-(diphenylphosphino)acetic acid, P). These series show that modifying the substitution pattern on the ligands can alter the photophysical and electrochemical properties of the complexes. Overall, we show that compared to complexes containing phenyl-pyridine ligands, highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) are more delocalized over the entire main ligand in complexes containing phenyl-imidazole. Contrary to expectations, when chlorine atoms are used as strong acceptor substituents on the orthometalated phenyl, a red shift of the emission is observed. This behavior has been rationalized using theoretical calculations on the excited state of the chloro-substituted complex 3a compared to the model 1a.
    DOI:
    10.1021/ic901834v
  • 作为产物:
    参考文献:
    名称:
    Cyclometalated Iridium(III) Complexes Based on Phenyl-Imidazole Ligand
    摘要:
    Phenyl-imidazole-based ligands with various substitution patterns have been used as the main ligand for heteroleptic bis-cyclometalated Iridium complexes. Two series of complexes have been prepared and their photophysical and electrochemical properties were studied. The phosphorescence emission maxima range from about 490 to 590 nm, that is, from greenish-blue to orange. The first series is of the form Ir(L)(2)(acac) (L: a phenyl-imidazole based ligand; acac: acetylacetonate). In the first complex, la, L is 1,4,5-trimethyl-2-phenyl-1H-imidazole. Then, methyl groups are replaced with phenyl groups and chlorines are grafted on the cyclometalated phenyl ring. The second series is of the form Ir(4,5-dimethyl-1,2-diphenyl-1H-imidazole)(2)(L-a) (L-a: ancillary ligand being acetylacetonate, acac, N,N-dimethylamir o-picolinate, NPic, picolinate, Pic, or 2-(diphenylphosphino)acetic acid, P). These series show that modifying the substitution pattern on the ligands can alter the photophysical and electrochemical properties of the complexes. Overall, we show that compared to complexes containing phenyl-pyridine ligands, highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) are more delocalized over the entire main ligand in complexes containing phenyl-imidazole. Contrary to expectations, when chlorine atoms are used as strong acceptor substituents on the orthometalated phenyl, a red shift of the emission is observed. This behavior has been rationalized using theoretical calculations on the excited state of the chloro-substituted complex 3a compared to the model 1a.
    DOI:
    10.1021/ic901834v
点击查看最新优质反应信息