摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(η5-C5Me5)Ir(PMe3)(C6H5)Br | 114378-42-6

中文名称
——
中文别名
——
英文名称
(η5-C5Me5)Ir(PMe3)(C6H5)Br
英文别名
——
(η5-C5Me5)Ir(PMe3)(C6H5)Br化学式
CAS
114378-42-6
化学式
C19H29BrIrP
mdl
——
分子量
560.537
InChiKey
RYDORUBAGFYKPH-UHFFFAOYSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    (η5-C5Me5)Ir(PMe3)(C6H5)Br丙基氯化镁乙醚 为溶剂, 生成 (η(5)-C5Me5)(PMe3)Ir(C6H5)(H) 、 (η5-C5Me5)Ir(PMe3)(C6H5)n-C3H7
    参考文献:
    名称:
    (.eta.3-烯丙基)(氢化)铱配合物的合成及其与芳烃和烷烃的反应。连续分子间碳氢氧化加成和氢化物到烯烃迁移插入反应
    摘要:
    铱烯丙基氢化物(/eta//sup 5/-C/sub 5/Me/sub 5/)(/eta//sup 3/-C/sub 3/H/sub 5/)(H)Ir ( 2) 已由 ((/eta//sup 5/-C/sub 5/Me/sub 5/)IrCl/sub 2/)/sub 2/ 制备,并研究了其与芳烃和烷烃的反应。在膦 L 存在下,氢化物与苯和环丙烷中的 CH 键反应,生成苯基和环丙基配合物 (/eta//sup 5/-C/sub 5/Me/sub 5/)(L)Ir(n -丙基)(R)(3,4和5)。在 PMe/sub 3/ 存在的情况下对 2 的辐照采用不同的过程,给出以前未表征的 (/eta//sup 5/-C/sub 5/Me/sub 5/)Ir(PMe/sub 3/)/子 2/ (6)。2 在烷烃溶剂如正丁烷和异丁烷中的热反应,能够消除 β-消除,产生产物 8a、8b、和9通过由烷烃的整
    DOI:
    10.1021/ja00221a026
  • 作为产物:
    描述:
    (η5-C5Me5)Ir(PMe3)Br2苯基氯化镁乙醚 为溶剂, 以50%的产率得到(η5-C5Me5)Ir(PMe3)(C6H5)Br
    参考文献:
    名称:
    (.eta.3-烯丙基)(氢化)铱配合物的合成及其与芳烃和烷烃的反应。连续分子间碳氢氧化加成和氢化物到烯烃迁移插入反应
    摘要:
    铱烯丙基氢化物(/eta//sup 5/-C/sub 5/Me/sub 5/)(/eta//sup 3/-C/sub 3/H/sub 5/)(H)Ir ( 2) 已由 ((/eta//sup 5/-C/sub 5/Me/sub 5/)IrCl/sub 2/)/sub 2/ 制备,并研究了其与芳烃和烷烃的反应。在膦 L 存在下,氢化物与苯和环丙烷中的 CH 键反应,生成苯基和环丙基配合物 (/eta//sup 5/-C/sub 5/Me/sub 5/)(L)Ir(n -丙基)(R)(3,4和5)。在 PMe/sub 3/ 存在的情况下对 2 的辐照采用不同的过程,给出以前未表征的 (/eta//sup 5/-C/sub 5/Me/sub 5/)Ir(PMe/sub 3/)/子 2/ (6)。2 在烷烃溶剂如正丁烷和异丁烷中的热反应,能够消除 β-消除,产生产物 8a、8b、和9通过由烷烃的整
    DOI:
    10.1021/ja00221a026
点击查看最新优质反应信息

文献信息

  • Synthesis and Chemistry of the Aryliridium(III) Fluorides Cp'Ir(PMe3)(Aryl)F: High Reactivity due to Surprisingly Easy Ir-F Ionization
    作者:John E. Veltheer、Peter Burger、Robert G. Bergman
    DOI:10.1021/ja00155a012
    日期:1995.12
    This paper reports the synthesis and chemistry of the unusual late metal fluoride complexes, Cp'Ir-(PMe(3))(Aryl)F [Cp' = Cp* (C(5)Me(5)), Aryl = Ph (1a); Cp' = Cp*, Aryl = p-tolyl (1b); Cp' = Cp(Et) (C(5)Me(4)Et), Aryl = Ph(1c)]. The solid-state structure of Ic has been determined: crystals of 1c are monoclinic, space group P2(1)/c, with a = 9.235(2) Angstrom, b = 12.667(2) Angstrom, c = 17.129(3) Angstrom, beta 104.547(16)degrees, and Z = 4; R = 3.98%, wR = 4.65% for 2859 data for F-2 > 3 sigma(F-2). These complexes exhibit reactivity that is substantially different from that of related Cl, Pr, and I species because of the greater propensity of fluoride ion to dissociate from the Ir center, even in nonpolar solvents. For example, in solution at room temperature, fluoride is slowly displaced from complexes 1 by Lewis bases such as pyridines and phosphines (L); the resulting salts [Cp'Ir(PMe(3))(Aryl)(L)]F (2) exist in equilibrium with the covalent starting materials. This equilibrium Lies well to the left for pyridines and phosphines under anhydrous conditions, but both the rate of establishment and the magnitude of K-eq are increased dramatically by the addition of H2O. In aqueous THF the aquo species [Cp*Ir(PMe(3))(Ph)(OH2)]F . xH(2)O (2e) is formed much more rapidly than the [Cp'Ir(PMe(3))(Aryl)(L)]F salts. This, and the rapid further reactivity of 2e, enables the aquo species to serve as an intermediate in the water-catalyzed substitution of fluoride by L. Treatment of la with mixtures of water and other entering ligands and monitoring these reactions over time reveals that the kinetic affinity of these ligands for the Ir center is exactly the reverse of their thermodynamic affinity: kinetically, H2O > pyridines > phosphines; thermodynamically, phosphines > pyridines > H2O. Addition of BPh(3) to [Cp'Ir(PMe(3))(Aryl)(L)]F (2) in nonaqueous media leads to irreversible formation of the berate complexes, [Cp'Ir(PMe(3))(Aryl)(L)]BPh(3)F. The lability of the fluoride Ligand in complexes 1 is also demonstrated by mixing Cp*Ir(PMe(3))(Ph)F with Cp*Ir(PMe(3))(p-tolyl)X IX Cl, Pr, OTf, OPh] in C6D6, which leads to solutions containing four species identifiable as the two starting materials and the two exchange products Cp*Ir(PMe(3))Ph)X and Cp*Ir(PMe(3))p-tolyl)F. Organic halides participate in exchange as well; reaction of la with PhCH(2)Br, Me(3)SiCl, MeCOCl, and even CH2Cl2 results in complete replacement of fluoride by bromide or chloride in la. The labile fluoride ion also leads to other novel reactivity. For example, addition of dimethyl acetylenedicarboxylate to complexes 1 gives iridacyclopentadiene complexes (5) and reaction of la and Ic with (l-trimethylsilyl)imidazole provides Cp'Ir(PMe(3))(Ph)(imidazolate) complexes (7) and Me(3)SiF. Treatment of 1 with silanes HSiMe(2)R [R = Ph, Me] leads to the formation of Cp'Ir(PMe(3))(R)(SiMe(2)F) complexes(8); excess HS-p-tolyl reacts with either 1a or 1b to provide Cp*Ir(PMe(3))(S-p-tolyl)(2) (10).
查看更多