摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

dodecamethylcarba-closo-dodecaborate | 183679-26-7

中文名称
——
中文别名
——
英文名称
dodecamethylcarba-closo-dodecaborate
英文别名
dodecamethylcarboranyl radical;closo-dodecamethylcarboranyl
dodecamethylcarba-closo-dodecaborate化学式
CAS
183679-26-7
化学式
C13H36B11
mdl
——
分子量
311.35
InChiKey
UPQLFMXYRKWHFR-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    dodecamethylcarba-closo-dodecaborate 在 t-Bu6Si2 作用下, 以 正戊烷 为溶剂, 生成
    参考文献:
    名称:
    CB11Me11Boronium Ylides:具有裸硼顶点的 Carba-closo-dodecaboranes
    摘要:
    在戊烷溶液中,2 当量的二十面体 CB(11)Me(12)(*) 自由基通过硼向硅甲基转移裂解六烷基乙硅烷的 Si-Si 键,形成 2 当量的甲基三烷基硅烷。甲基自由基的丢失将 CB(11)Me(12)(*) 自由基转化为具有裸顶点的内部电荷补偿“硼叶立德”CB(11)Me(11),这可以正式视为去质子化的超氯碳硼烷。它已被分离为一种空气敏感固体,仅在大约 -60 摄氏度以下稳定。由于该材料立即与醇和醚反应形成 12-烷氧基阴离子 12-CB(11 )我(11)或。它与许多其他亲核试剂反应,产生含有相似产物的更复杂的混合物。四种 CB(11)Me(11) 异构体的 DFT 计算给出了闭壳基态电子结构。对于具有裸顶点 12 的异构体,DFT 计算搜索未能揭示任何骨架二聚体,显然是由于过度的甲基-甲基排斥,并且只有一个环状二聚体通过每个笼子上的一个 7-甲基氢原子与在另一个笼子的 B12 上发
    DOI:
    10.1021/ja054256m
  • 作为产物:
    描述:
    cesium (1-12)-dodecamethyl-1-carba-closo-dodecaborate 在 lead dioxide三氟乙酸 作用下, 生成 dodecamethylcarba-closo-dodecaborate
    参考文献:
    名称:
    •具有五折取代对称性的自由基16 CB 11(CH 3)n(CD 3)12– n • CB 11 Me 12中的自旋密度分布•
    摘要:
    描述了具有5倍取代对称性的所有16个CB 11(CH 3)n(CD 3)12– n •自由基的合成。它们的宽泛和无特征的电子顺磁共振信号的宽度随氘化模式的变化用于推导ipso (1),邻位(2)中氢原子的平均超精细偶合常数a H的相对值。–6),间位(7-11)和对位(12)甲基,一个H(i):一个H(o):一个H(m):aH(p)=(0.18±0.09):( 0.71±0.02):( 1.00±0.03):( 0.52±0.05),可以将它们与B3LYP / EPRII计算所预期的比率0.04:0.55:1进行比较: 0.51。
    DOI:
    10.1021/ic301236s
点击查看最新优质反应信息

文献信息

  • Metal Cation−Methyl Interactions in CB<sub>11</sub>Me<sub>12</sub><sup>-</sup> Salts of Me<sub>3</sub>Ge<sup>+</sup>, Me<sub>3</sub>Sn<sup>+</sup>, and Me<sub>3</sub>Pb<sup>+</sup>
    作者:Ilya Zharov、Tsu-Chien Weng、Anita M. Orendt、Dewey H. Barich、James Penner-Hahn、David M. Grant、Zdenek Havlas、Josef Michl
    DOI:10.1021/ja0475205
    日期:2004.9.1
    = Ge, Sn) and Me(4)Pb with the CB(11)Me(12)(*) radical in alkane solvents produced the insoluble salts Me(3)M(+)CB(11)Me(12)(-), characterized by CP-MAS NMR and EXAFS. The cations interact with methyl groups of CB(11)Me(12)(-) with coordination strength increasing from Pb to Ge. Density functional theory (DFT) calculations for the isolated ion pairs, Me(3)M(+)CB(11)Me(12)(-) (M = Ge, Sn), revealed three
    Me(6)M(2) (M = Ge, Sn) 和 Me(4)Pb 与 CB(11)Me(12)(*) 自由基在烷烃溶剂中氧化产生不溶性盐 Me(3)M( +)CB(11)Me(12)(-),由 CP-MAS NMR 和 EXAFS 表征。阳离子与 CB(11)Me(12)(-) 的甲基相互作用,配位强度从 Pb 增加到 Ge。分离离子对 Me(3)M(+)CB(11)Me(12)(-) (M = Ge, Sn) 的密度泛函理论 (DFT) 计算揭示了三种异构体,其阳离子高于甲基 2, 7 或 12,且不高于 BB 边或 BBB 三角形。相互作用具有相当大的共价成分,阳离子试图在甲基碳上进行背面 S(E)2 取代。在第四个不太有利的异构体中,阳离子接近甲基 1,倾向于甲基 2,并与氢相互作用。以 CB(11)H(12)(-) 和 CB(11)Me(12)(-) 二十面体为中心的球体表面的 DFT
  • Continuum of Outer- and Inner-Sphere Mechanisms for Organic Electron Transfer. Steric Modulation of the Precursor Complex in Paramagnetic (Ion-Radical) Self-Exchanges
    作者:Sergiy V. Rosokha、Jay K. Kochi
    DOI:10.1021/ja069149m
    日期:2007.3.1
    as well as between different electron acceptors (A) paired with their anion radicals (A-*), are spectrally (UV-NIR) observed and structurally (X-ray) identified as the cofacial (pi-stacked) associates [D, D+*] and [A-*, A], respectively. Mulliken-Hush (two-state) analysis of their diagnostic intervalence bands affords the electronic coupling elements (HDA), which together with the Marcus reorganization
    瞬态 1:1 前体复合物,用于各种有机电子供体 (D) 与其顺磁性阳离子自由基 (D+*) 之间以及不同电子受体 (A) 与其阴离子自由基 (A-*) 之间的分子间自交换,分别通过光谱 (UV-NIR) 观察和结构 (X 射线) 识别为共面 (pi 堆叠) 关联 [D, D+*] 和 [A-*, A]。其诊断间隔带的 Mulliken-Hush(二态)分析提供了电子耦合元素 (HDA),其与来自 NIR 光谱数据的 Marcus 重组能 (lambDA) 一起通过分子轨道计算得到证实。发现 HDA 值是围绕氧化还原中心的庞大取代基的敏感函数。因此,供体/受体分离(rDA)的空间调制导致空间受阻供体/受体与其更开放(未取代)的亲本之间的独特电子转移速率。后者是在有机电子转移过程的一系列连续的外球和内球机制的背景下讨论的,这种机制最初是由 Taube 和同事为无机(配位)供体/受体二元组制定的
  • Molecular and Electronic Structures of the Long-Bonded π-Dimers of Tetrathiafulvalene Cation-Radical in Intermolecular Electron Transfer and in (Solid-State) Conductivity
    作者:Sergiy V. Rosokha、Jay K. Kochi
    DOI:10.1021/ja064166x
    日期:2007.1.1
    Tetrathiafulvalene (TTF) as the prototypical electron donor for solid-state (electronics) applications is converted to the unusual cation-radical salt, TTF+center dot CB- (where CB- is the non-coordinating closo-dodecamethylcarboranate), for crystallographic and spectral analyses. Near-IR studies establish the spontaneous self-association of TTF+center dot to form the diamagnetic [TTF+,TTF+] dication and to also undergo the equally rapid cross-association with its parent donor to form the mixed-valence [TTF+center dot,TTF] cation-radical. The latter, most importantly, represents the first (dyad) member of a series of p-doped tetrathiafulvalene (stacked) arrays, and the thorough scrutiny of its electronic structure with the aid of Mulliken-Hush (two-state) analysis of the diagnostic (intervalence) NIR band reveals Robin-Day Class II behavior. The theoretical consequences of the unique structure of the mixed-valence [TTF+center dot,TTF] dyad on (a) the electron-transfer mechanism for self-exchange, (b) the molecular-orbital analysis of the Marcus reorganization energy, and (c) the ab initio computation of the coupling element or transfer integral in p-doped (solid-state) arrays are discussed.
  • Dodecamethylcarba-<i>closo</i>-dodecaboranyl (CB<sub>11</sub>Me<sub>12</sub><sup>•</sup>), a Stable Free Radical
    作者:Benjamin T. King、Bruce C. Noll、Allan J. McKinley、Josef Michl
    DOI:10.1021/ja9622160
    日期:1996.1.1
  • Very Fast Electron Migrations within p-Doped Aromatic Cofacial Arrays Leading to Three-Dimensional (Toroidal) π-Delocalization
    作者:Sergiy V. Rosokha、Ivan S. Neretin、Duoli Sun、Jay K. Kochi
    DOI:10.1021/ja060393n
    日期:2006.7.1
    The charge-resonance phenomenon originally identified by Badger and Brocklehurst lies at the core of the basic understanding of electron movement and delocalization that is possible within p-doped aromatic (face-to-face) arrays. To this end, we now utilize a series of different aryl-donor groups (Ar) around a central platform to precisely evaluate the intramolecular electron movement among these tethered redox centers. As such, the unique charge-resonance (intervalence) absorption bands observed upon the one-electron oxidation or p-doping of various hexaarylbenzenoid arrays (Ar6C6) provide quantitative measures of the reorganization energy (lambda) and the electronic coupling element (H-ab) that are required for the evaluation of the activation barrier (Delta G(ET)*) for electron-transfer self-exchange according to Marcus-Hush theory. The extensive search for viable redox centers is considerably aided by the application of a voltammetric criterion that has led in this study to Ar = N, N-dialkyl-p-anilinyl, in which exceptionally low barriers are shown to lie in the range Delta G(ET)* = 0.3-0.7 kcal mol(-1) for very fast electron hopping or peregrination around the hexagonal circuit among six equivalent Ar sites. Therefore, at transition temperatures T-t > 0.5/R or roughly -20 degrees C, the electron-transfer dynamics become essentially barrierless since the whizzing occurs beyond the continuum of states and effectively achieves complete pi-delocalization.
查看更多