摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

氮化铌 | 24621-21-4

中文名称
氮化铌
中文别名
——
英文名称
niobium nitride
英文别名
azanylidyneniobium
氮化铌化学式
CAS
24621-21-4
化学式
NNb
mdl
——
分子量
106.913
InChiKey
CFJRGWXELQQLSA-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    2573°C
  • 密度:
    8,4 g/cm3
  • 溶解度:
    不溶于HCl、酸性溶液
  • 稳定性/保质期:
    在空气中加热至500~800℃时,会生成五氧化二铌并放出氮。而在真空中,氮化铌则会分解生成金属铌。此外,氮化铌可以与碳化钛、碳化锆、碳化钒和碳化钽等形成固溶体。

计算性质

  • 辛醇/水分配系数(LogP):
    0.01
  • 重原子数:
    2
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    23.8
  • 氢给体数:
    0
  • 氢受体数:
    1

安全信息

  • TSCA:
    Yes

SDS

SDS:c9713c7c7b50a923601a2e9f5bf63c8c
查看

制备方法与用途

理化性质

氮化铌呈现出浅灰色并略带黄色。其相对密度为8.47,熔点达到2300℃,生成热为-237.8 kJ/mol,莫氏硬度为8,显微硬度为14.3 GPa,电阻率为200 μ·cm。氮化铌的超导转变临界温度为15.6 K。它不溶于盐酸、硝酸和硫酸,但能溶于氢氟酸和硫酸浓溶液中,亦可溶于热碱或高浓度碱液,并释放氨气。在空气中加热至500~800℃时,会生成五氧化二铌并释放氮气;而在真空中,则会分解成金属铌。

用途

氮化铌可用作硬质合金添加剂,也可用于制备高纯铌材料。

合成方法
  1. 直接法:以金属铌和氮气为原料,在700~1100℃的温度下将粉碎的金属铌送入氮化炉中,并通入氮气或氨气,使其反应生成氮化铌。

  2. 还原法

    • 以五氧化二铌和氮气为原料,在炭粉的存在下制备氮化铌。反应式如下:[ \text{Nb}_2\text{O}_5 + 2\text{N} + 5\text{C} = 2\text{NbN} + 5\text{CO} ]
    • 将粉碎的金属铌粉与炭粉混合,送入还原炉中,通入氢气和氮气,在1250℃下反应2小时得到氮化铌。
  3. 直接法:同样以金属铌和氮气为原料,在700~1100℃温度下将粉碎的金属铌送入氮化炉中,并通入氮气或氨气,使其反应1~2小时即可生成氮化铌。

反应信息

  • 作为产物:
    描述:
    参考文献:
    名称:
    KAIEHDA, JOSIYA;OIEH, MASASI
    摘要:
    DOI:
点击查看最新优质反应信息

文献信息

  • KAIEHDA, JOSIYA;OIEH, MASASI
    作者:KAIEHDA, JOSIYA、OIEH, MASASI
    DOI:——
    日期:——
  • BOUDART, MICHEL;OYAMA, SHIGEO T.;VOLPE, LEO
    作者:BOUDART, MICHEL、OYAMA, SHIGEO T.、VOLPE, LEO
    DOI:——
    日期:——
  • FUKUXARA, MIKIO;MITOMO, MAMORU
    作者:FUKUXARA, MIKIO、MITOMO, MAMORU
    DOI:——
    日期:——
  • The permanent electric dipole moment of NbN
    作者:D. A. Fletcher、D. Dai、T. C. Steimle、K. Balasubramanian
    DOI:10.1063/1.465503
    日期:1993.12
    A high resolution optical Stark study of a niobium nitride (NbN) supersonic molecular beam sample has been performed. The F′=2.5–F″=3.5 hyperfine component of the R(1) branch feature of the (0,0) B 3F2–X 3D1 subband system was recorded as a function of static electric field strengths up to 2.7 kV/cm. The permanent electric dipole moment of 3.26(6) D and 4.42(9) D for the X 3D1 and B 3F2 states, respectively. The properties of the X 3D1 state were calculated ab initio using a complete active space multiconfiguration self-consistent-field approach followed by first-order configuration interactions plus multireference singles+doubles configuration interaction treatment. The calculated dipole moment for the X 3D1 state at the experimentally determined equilibrium bond distance is 3.65 D.
  • Spin–orbit distortion of the hyperfine structure in heavier molecules: Breakdown of the case (a<sub>β</sub>) formalism in the <i>B</i> <sup>3</sup>Φ–<i>X</i> <sup>3</sup>Δ system of gaseous NbN
    作者:Y. Azuma、J. A. Barry、M. P. J. Lyne、A. J. Merer、J. O. Schröder、J.‐L. Féménias
    DOI:10.1063/1.457505
    日期:1989.7
    A detailed analysis of the rotational and hyperfine structure of the (0,0) band of the B 3Φ–X 3Δ electronic transition of NbN has been performed from sub-Doppler spectra taken with linewidths of about 50 MHz. The Nb hyperfine structure is impressively wide in both states, but particularly so in X 3Δ where one of the unpaired electrons occupies a σ orbital derived from the metal 5s orbital. The electron spin and hyperfine structures do not follow the expected case (aβ ) coupling because of extensive second order spin-orbit effects. It is shown that the asymmetry in the spin–orbit structure of X 3Δ is explained almost quantitatively by interaction with a 1 Δ state from the same electron configuration (which lies at 5197 cm−1); also cross terms between the spin–orbit and Fermi contact interactions in the matrix element 〈3Δ2‖H‖1Δ〉 produce a large correction to the apparent coefficient of the I⋅L magnetic hyperfine interaction in X 3Δ2. The hyperfine structure in a triplet state turns out to be extremely sensitive to the details of the electron spin coupling, and reversals in the sense of the hyperfine structure in the 3Φ4–3Δ3 and 3Φ2–3Δ1 subbands are shown to be consistent with the3Δ state being a regular spin–orbit multiplet (A&gt;0). Particular care has been taken with the calibration, which has meant that extra terms have needed to be added to the magnetic hyperfine Hamiltonian to account for the spin–orbit distortions: instead of the usual three parameters needed in case (aβ ) coupling, the B 3Φ state has required four parameters and the X 3Δ state has required five. The model explains the data very well, and the standard deviation in the least-squares fit to more than 1000 hyperfine line frequencies was 0.000 58 cm−1 (17 MHz).
查看更多