Magnetic and hydrogen ordering in the frustrated Laves hydrides<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>R</mml:mi><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Mn</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mn>4.5</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo>(</mml:mo><mml:mi>R</mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant="normal">Y</mml:mi><mml:mo>,</mml:mo></mml:math>Gd, Tb, Dy, Ho): A neutron-diffraction study
作者:I. N. Goncharenko、I. Mirebeau、A. V. Irodova、E. Suard
DOI:10.1103/physrevb.59.9324
日期:——
We have studied the magnetic and crystal structures of different Laves hydrides RMn2H4.5 (R = Y, Gd, Tb, Dy, Ho), having the cubic C15 structure at high temperature. We observe a strong coupling between the hydrogen and magnetic order in the frustrated Mn sublattice. The Neel temperature coincides with the ordering temperature in the hydrogen sublattice, resulting in a single magnetostructural transition. In contrast to the RMn2 compounds, in the hydrides the Mn-Mn magnetic interaction dominates and it imposes the magnetic order in the rare-earth sublattice. On the other hand, the anisotropy of the rare-earth ion strongly influences the orientation of the magnetic moments at low temperature. The Laves hydrides show a very unusual case where the structural and magnetic orders strongly interact with each other. They also offer many examples of the interplay between the localized Mn moments and the rare-earth moments. [S0163-1829(99)13213-2].