摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 100898-71-3

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
100898-71-3
化学式
C11H23CrNO7P2
mdl
——
分子量
395.25
InChiKey
GPLNQCLMJPCNBC-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为产物:
    描述:
    三甲氧基磷sodium amalgam 作用下, 以 四氢呋喃 为溶剂, 以33%的产率得到
    参考文献:
    名称:
    Hunter, Allen D.; Legzdins, Peter, Organometallics, 1986, vol. 5, # 5, p. 1001 - 1009
    摘要:
    DOI:
点击查看最新优质反应信息

文献信息

  • Ligand Control of Electronic Stability: 17- vs 18-Valence-Electron Configurations of CpCr(NO)(ligand)2 Complexes
    作者:Peter Legzdins、W. Stephen McNeil、Raymond J. Batchelor、Frederick W. B. Einstein
    DOI:10.1021/ja00092a084
    日期:1994.6
  • Ligand Control of Electronic Stability of CpCr(NO)(ligand)2 Complexes
    作者:Peter Legzdins、W. Stephen McNeil、Raymond J. Batchelor、Frederick W. B. Einstein
    DOI:10.1021/ja00147a013
    日期:1995.10
    Treatment of [CpCr(NO)I](2) with an excess of a Lewis base, L, in CH2Cl2 leads to the formation of the complex salts [CpCr(NO)(L)(2)](+)[I](-) ([1]I-+(-), L = NH3; [3]I-+(-), L = NH2CH2CH=CH2; [7]I-+(-), L = 1/2en). Heating of salts [1]I-+(-) and [3]I-+(-) results in loss of L and formation of the neutral complexes, CpCr(NO)(NH(2)R)I (2, R = H; 4, R = CH2CH=CH2), respectively. In contrast, reaction of [CpCr(NO)I](2) with the bulkier NH(2)CMe(3) affords the neutral CpCr(NO)(NH(2)CMe(3))I (6) directly. Sequential reaction of 6 or CpCr(NO)(POMe}(3))I with AgPF6 and further L affords respectively the salts [CpCr(NO)(L)(2)](+)[PF6](-) ([5](+)[PF6](-), L = NH(2)CMe(3); [8](+)[PF6](-), L = P(OMe)(3)). All these species exhibit room-temperature ESR spectra and magnetic moments consistent with their possessing 17-valence-electron configurations. Zinc reduction of [CpCr(NO)I](2) in the presence of P(OMe)3 leads to the improved synthesis of the known complex CpCr(NO)(POMe}(3))(2) (8), and a similar reduction with CNCMe(3) affords the previously unknown CpCr(NO)(CNCMe(3))(2) (9). The solid-state molecular structures of [1](+)[BPh(4)](-). NCMe, 4, 8, and [8](+)[BPh(4)](-) have been established by single-crystal X-ray crystallographic analyses which afforded the following data. [CpCr(NO)(NH3)(2)][BPh(4)]. NCMe ([1](+)[BPh(4)](-). NCMe): monoclinic, space group P2(1)/n; Z = 4; a 9.478(3) Angstrom; b = 19.288(7) Angstrom; c = 15.427(6) Angstrom; beta = 91.99(3)degrees; V = 2818.5 Angstrom(3); T = 200 K; R(F) = 0.038 for 2185 data (I-o greater than or equal to 2.5o(I-o)) and 310 variables. CpCr(NO)(NH2C3H5)(I) (4): triclinic, space group P (1) over bar; Z = 2; a = 8.0497(8) Angstrom; b = 8.3273(17) Angstrom; c = 9.3284(9) Angstrom; alpha = 108.182(12)degrees; beta = 92.370(8)degrees; gamma = 94.759(12)degrees; V = 590.54 Angstrom(3); T = 295 K; R(F) = 0.024 for 1756 data (I-o greater than or equal to 2.5 sigma(I-o)) and 123 variables. CpCr(NO)(POMe}(3))(2) (8): monoclinic, space group P2(1)/a; Z = 8;(1)a = 18.080(4) Angstrom; b = 9.320(4) Angstrom; c = 21.068(3) Angstrom; beta = 93.02(2)degrees; V = 3545.1 Angstrom(3); T = 205 K; R(F) 0.040 for 3356 data (I-o greater than or equal to 2.5 sigma(I-o)) and 411 variables. [CpCr(NO)(POMe}(3))(2)][BP4] ([8](+)[BPh(4)](-)): monoclinic, space group P2(1)/n; Z = 4; a 10.086(2) Angstrom; b = 22.253(3) Angstrom; c 16.150(4) Angstrom; beta 90.42(2)degrees; V = 3624.7 Angstrom(3); T = 195 K; R(F) = 0.044 for 3334 data (I-o greater than or equal to 2.5 sigma(I-o)) and 449 variables. Despite its 17-electron configuration, [1](+) does not undergo ligand substitution, nor does it effect H-atom abstraction from HSn(n-Bu)(3). However, it exhibits an irreversible reduction at E(p,c) = -1.3 V vs SCE in THF, and zinc reduction of [1](+) (as its [PF6](-) salt) in the presence of CO (1 atm) affords CpCr(NO)(CO)(2). In a reverse manner, oxidation of 2 by [Cp(2)Fe](+)[PF6](-) in acetonitrile produces [CpCr(NO)(NCMe)(2)](+)[PF6](-) a salt which contains a 17-electron cation similar to [1](+). These experimental observations lead to the conclusion that for CpCr(NO)L(2) complexes, sigma-base ligands stabilize the 17-electron configurations of cations whereas pi-acid ligands stabilize the 18-electron configurations of the neutral congeners. Intermediate ligands (e.g. L = P(OMe)(3)) yield complexes which are capable of existing in both forms. This trend can be rationalized by the results of an Extended Huckel analysis of the CpCr(NO) fragment and the interaction of its frontier orbitals with those of various ligands, L.
  • Alkyl-for-Iodide Metathesis Initiated by Dissociation of the Phosphine Ligand from CpCr(NO)(PPh3)I
    作者:Peter Legzdins、Michael J. Shaw
    DOI:10.1021/ja00096a029
    日期:1994.8
    The alkyl-for-iodide metathesis reaction that occurs when CpCr(NO)(PPh(3))I (1) is treated with 2 equiv of Me(3)SiCH(2)MgCl in THF to form CpCr(NO)(PPh(3))(CH(2)SiMe(3)) (6) has been investigated in some detail. The conversion is initiated by loss of the phosphine ligand from the chromium atom's coordination sphere, the most compelling evidence for this step being that addition of excess phosphine (e.g. 4 equiv) to the initial reaction mixture completely inhibits the reaction. Four intermediate complexes which are formed sequentially on the reaction path from 1 to 6 have been detected by IR and ESR spectroscopy. These complexes have been identified as CpCr(NO)(THF)I (2), CpCr-(NO-->MgCH(2)SiMe(3)})Cl)(THF)I (3), CpCr(NO-->MgCH(2)SiMe(3)}Cl)(THF)(CH(2)SiMe(3)) (4), and CpCr(NO) (THF)(CH(2)SiMe(3)) (5). Complexes 3 and 4 have also been detected spectroscopically during the reaction of CpCr(NO)(THF)I (2) with Me(3)SiCH(2)MgCl which produces CpCr(NO)(THF)(CH(2)SiMe(3)) (5). This understanding of the mechanistic pathway has resulted in the development of a general synthetic route to previously inaccessible 17-valence-electron CpCr(NO)(L)R complexes (L = C5H11N Or NH(2)CMe(3), R = CH(2)SiMe(3); L = C5H11N, R = CH(2)Ph).
查看更多