摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Rh(CF3COCHCOFc)(COD) | 213037-34-4

中文名称
——
中文别名
——
英文名称
Rh(CF3COCHCOFc)(COD)
英文别名
Rh(CF3COCHCOferrocenyl)(1,5-cyclooctadiene);[Rh(1,5-cyclooctadiene)(ferrocenoyltrifluoroacetonato)];[Rh(FcCOCHCOCF3)(1,5-cyclooctadiene)]
Rh(CF<sub>3</sub>COCHCOFc)(COD)化学式
CAS
213037-34-4
化学式
C22H22F3FeO2Rh
mdl
——
分子量
534.163
InChiKey
FCXFMOBWKBJNPT-KJWGIZLLSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    Rh(CF3COCHCOFc)(COD)一氧化碳丙酮 为溶剂, 以83%的产率得到Rh(ferrocenylCOCHCOCF3)(carbonyl)2
    参考文献:
    名称:
    含二茂铁的铑(I)和铑(III)的合成和表征
    摘要:
    [Rh(FcCOCHCOR)(CO)2 ]和[Rh(FcCOCHCOR)(CO)(PPh 3)]类型的新β-二酮铑(I)配合物的合成,其中Fc =二茂铁基且R = Fc,C 6描述了H 5,CH 3和CF 3。1 H,13 C和31 P NMR数据显示,对于每种非对称β-二酮单羰基铑(I)络合物,溶液中均存在两种异构体。与平衡反应中的这两种异构体有关的平衡常数K c与浓度无关,但与温度和溶剂有关。Δ - [R G ^,Δ - [R ħ和Δ ř小号这个平衡值已被确定,并在规模迪姆罗极性溶剂之间的线性关系和ķ Ç存在。RhP键长,d之间(RhP)和的关系,31个P NMR峰位置,以及耦合常数1 Ĵ(31 P 103的Rh)已被量化,以允许近似d的计算(RhP)价值观。在d的变化(RhP)用于铑[Rh(RCOCHCOR')(CO)(PPH 3)]配合物也被与终端相关β-二酮盐的R基团的电负性基团(戈迪刻度)反式到PPH
    DOI:
    10.1016/s0020-1693(01)00731-9
  • 作为产物:
    描述:
    di-μ-chloro-bis(1,5-cyclooctadiene)dirhodium 、 (Z)-1-ferrocenyl-4,4,4-trifluoro-2-hydroxy-2-en-1-butaone 以 N,N-二甲基甲酰胺 为溶剂, 以87%的产率得到Rh(CF3COCHCOFc)(COD)
    参考文献:
    名称:
    含二茂铁基的β-二酮:合成,结构方面,p K a 1值,基团电负性和与铑(I)的络合
    摘要:
    1-二茂铁基-4,4,4-三氟丁烷-1,3-二酮(二茂铁酰基三氟丙酮,Hfctfa,p K a 1  = 6.53±0.03),4,4,4-三氯-1-二茂铁基丁烷-1,3-二酮(三氯 二茂铁基丙酮,Hfctca,p K a 1 = 7.15±0.02),1-二茂铁基丁烷-1,3-二酮(二茂铁基丙酮,Hfca,p K a 1  = 10.01±0.02),1-二茂铁基-3-苯基丙烷-1,3-二酮(苯甲酰二茂铁酰基甲烷,Hbfcm,p K a 1  = 10.41±0.02)和1,3-二茂铁基丙烷-1,3-二酮(二茂铁酰基甲烷,Hdfcm,p K a 1 通过在酰胺钠,乙醇钠或二异丙基氨基锂的影响下,将乙酰基二茂铁与适当的酯进行克莱森缩合反应,制得13.1±0.1)。从线性β-二酮p K a 1-基团电负性关系以及线性甲酯IR羰基拉伸频率-基团电负性关系推断,二茂铁基的基团电负性为1.87(高迪标度)。通过用[Rh
    DOI:
    10.1039/a802398k
点击查看最新优质反应信息

文献信息

  • Kinetics of substitution of ferrocenyl-containing β-diketonato ligands by phenanthroline from β-diketonato-1,5-cyclooctadienerhodium(I) complexes
    作者:Theunis G. Vosloo、W.C. (Ina) du Plessis、Jannie C. Swarts
    DOI:10.1016/s0020-1693(01)00805-2
    日期:2002.3
    Second-order rate constants, k(2), for the substitution of the ferrocene-containing beta-diketonato ligands FeCOCHCOR- with R = CF3 (ferrocenoyltrifluroacetonato, fctfa, pK(a) 6.56), CCl3 (ferrocenoyltrichloroacetonato. fetca, 7.13), CH3 (ferrocenoylacatonato, fca, 10.01), Ph (anion of benzoylferrocenoylmethane, bfcm. 10.41) and Fe (anion of diferrocenoylmethane, dfcm, 13.1) (Ph = phenyl, Fc = ferrocenyl, values in brackets are the pK(a) values of the free beta-diketones) from the complexes [Rh(cod)(FcCOCHCOR)] with 1,10-phenanthroline (phen, cod = 1,5-cyclooctadiene) at 25 degreesC were found to be 560 (R = CF3), 1370 (CCl3), 30 (Ph), 18 (CH3) and 7.0 dm(3) mol(-1) s(-1) (Fc), respectively. The temperature dependence of each reaction was determined and the large negative values obtained for activation, DeltaS* < -100 J K (1) mol (1) for all but R = CCl3 (DeltaS(CCl3)* = -81 J K-1 mol(-1)), suggests an associative substitution mechanism. The rate law of the reaction was found to be R = k(s) + k(2)[phen]}[Rh(cod)(FcCOCHCOR)]. Since the solvent-associated rate constant k(s) approximate to 0 for all R except Ph (k(s,R Ph) = 0.06 s(-1)) the solvent. methanol. plays a limited role in the reaction. Results are interpreted to imply that the rate-determining step during substitution is breaking of an Rh-O bond and not the formation of an Rh-N bond. The role of beta-diketone pK(a), and group electronegativity, chi, of each R group on the rate of substitution are also discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
  • Synthetic, electrochemical and structural aspects of a series of ferrocene-containing dicarbonyl β-diketonato rhodium(I) complexes
    作者:Jeanet Conradie、T. Stanley Cameron、Manuel A. S. Aquino、Gert J. Lamprecht、Jannie C. Swarts
    DOI:10.1016/j.ica.2005.02.010
    日期:2005.5
    Treatment of [Rh(beta-diketonato)(cod)] with CO resulted in better yields of [Rh(FcCOCHCOR)(CO)(2)] than by treating [Rh(Cl)(CO)(2)](2) with FcCOCH(2)COR, R = CF3 (Hfctfa), CH3 (Hfca), Ph (Hbfcm, Ph = phenyl) and Fc (Hdfcm, Fc ferrocenyl). The single crystal structure of the fctfa rhodium(I) complex [C16H10F3FeO4Rh], monoclinic, C 2/c(15), a 13.266(3) angstrom, b = 19.553(3) angstrom, c = 13.278(3) angstrom, beta = 100.92(2)degrees, Z = 8 showed both rotational and translational displacement disorders for the CF3 group. An electrochemical study revealed that the formal reduction potential, E-0 ', for the electrochemically reversible one electron oxidation of the ferrocenyl group varied between 0.304 (for the fctfa complex) and 0.172 V (for the dfcm complex) versus Fc/ Fc(+) in a manner that could be directly traced to the group electronegativities, chi(R), of the R groups on the beta-diketonato ligands, as well as to the pK '(a) values of the free beta-diketones. Anodic peak potentials, E-pa.Rh,E- for the dominant cyclic voltammetry peak asso- ciated with rhodium(l) oxidation were between 0.718 (bfcm complex) and 1.022 V (dfcm complex) versus Fc/Fc '. Coulometric experiments implicated a second, much less pronounced anodic wave for the apparent two-electron Rh-I oxidation that overlaps with the ferrocenyl anodic wave and that the redox processes associated with these two Rh-I oxidation waves are in slow equilibrium with each other. (c) 2005 Elsevier B.V. All rights reserved.
查看更多