摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-12b-acetoxy-4,9,11-trihydroxy-4a,8,13,13-tetramethyl-5-oxo-6-(propionyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-1H-7,11-methanocyclodeca[3,4]benzo[1,2-b]oxet-12-yl 3-chlorobenzoate | 1134620-22-6

中文名称
——
中文别名
——
英文名称
(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-12b-acetoxy-4,9,11-trihydroxy-4a,8,13,13-tetramethyl-5-oxo-6-(propionyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-1H-7,11-methanocyclodeca[3,4]benzo[1,2-b]oxet-12-yl 3-chlorobenzoate
英文别名
——
(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-12b-acetoxy-4,9,11-trihydroxy-4a,8,13,13-tetramethyl-5-oxo-6-(propionyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-1H-7,11-methanocyclodeca[3,4]benzo[1,2-b]oxet-12-yl 3-chlorobenzoate化学式
CAS
1134620-22-6
化学式
C32H39ClO11
mdl
——
分子量
635.108
InChiKey
IILFDCAVQKSRJW-MNVLTVTDSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.7
  • 重原子数:
    44.0
  • 可旋转键数:
    5.0
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.62
  • 拓扑面积:
    165.89
  • 氢给体数:
    3.0
  • 氢受体数:
    11.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Syntheses and structure–activity relationships of novel 3′-difluoromethyl and 3′-trifluoromethyl-taxoids
    摘要:
    A series of novel 3'-difluoromethyl-taxoids and 3'-trifluoromethyl-taxoids with modifications at the C2 and C10 positions were synthesized and evaluated for their in vitro cytotoxicities against human breast carcinoma (MCF7-S, MCF7-R, LCC6-WT, LCC6-MDR), non-small cell lung carcinoma (H460) and colon adenocarcinoma (HT-29) cell lines. These second-generation fluoro-taxoids exhibited several times to more than 20 times better potency than paclitaxel against drug-sensitive cancer cell lines, MCF7-S, LCC6-WT. H460, and HT-29. These fluoro-taxoids also possess two orders of magnitude higher potency than paclitaxel against drug-resistant cancer cell lines, MCF7-R and LCC6-MDR. Structure-activity relationship study shows the importance of the C10 modification for increasing the activity against multidrug-resistant cancer cell lines. Effects of the C2-benzoate modifications on the potency in the 3'-difluoromethyl-taxoid series are very clear- (i.e., F < MeO < Cl < N-3), while those in the 3'-trifluoromethyl-taxoid series are less obvious. Also, different trends in the sensitivity to the C2-substitution are observed between drug-sensitive cell lines and drug-resistant cancer cell lines that overexpress efflux pumps. (c) 2008 Elsevier B.V. All rights reserved.
    DOI:
    10.1016/j.jfluchem.2008.05.013
  • 作为产物:
    参考文献:
    名称:
    Biocatalytic and Regioselective Exchange of 2‐O‐Benzoyl for 2‐O‐(m‐Substituted)Benzoyl Groups to Make Precursors of Next‐Generation Paclitaxel Drugs
    摘要:
    A taxane 2‐O‐benzoyltransferase (mTBT, derived from Accession: AF297618) biocatalyzed the dearoylation and rearoylation of next‐generation taxane precursors of drugs effective against multidrug‐resistant cancer cells. Various taxanes bearing an acyl, hydroxyl, or oxo group at C13 were screened to assess their turnover by mTBT catalysis. The 13‐oxotaxanes were the most productive, where 2‐O‐debenzoylation of 13‐oxobaccatin III was turned over faster compared to 13‐oxo‐10‐O‐(n‐propanoyl)‐10‐O‐deacetylbaccatin III and 13‐oxo‐10‐O‐(cyclopropane carbonyl)‐10‐O‐deacetylbaccatin III, yielding ~20 mg of each. mTBT catalysis was likely affected by an intramolecular hydrogen bond with the C13−hydroxyl. Oxidation to the 13‐oxo recovered catalysis. The experimental data for the debenzoylation reaction was supported by Gaussian‐accelerated molecular dynamics simulations that evaluated the conformational changes caused by different functional groups at C13 of the substrate. These findings also helped postulate where the 2‐O‐benzoylation reaction occurs on the paclitaxel pathway in nature. mTBT rearoylated the debenzoylated 13‐oxobaccatin III acceptors fastest with a non‐natural 3‐fluorobenzoyl CoA among the other aroyl CoA thioesters evaluated, yielding ~10 mg of each with excellent regioselectivity at laboratory scale. Reducing the 13‐oxo group to a hydroxyl yielded key modified baccatin III precursors (~10 mg at laboratory scale) of new‐generation taxoids.
    DOI:
    10.1002/cctc.202400186
点击查看最新优质反应信息