作者:Gabriel B. Hall、Jinzhu Chen、Charles A. Mebi、Noriko Okumura、Matthew T. Swenson、Stephanie E. Ossowski、Uzma I. Zakai、Gary S. Nichol、Dennis L. Lichtenberger、Dennis H. Evans、Richard S. Glass
DOI:10.1021/om400913p
日期:2013.11.11
Noninnocent ligands that are electronically coupled to active catalytic sites can influence the redox behavior of the catalysts. A series of (mu-dithiolato)Fe-2(CO)6 complexes, in which the sulfur atoms of the mu-dithiolato ligand are bridged by 5-substituted (Me, OMe, Cl, t-Bu)-1,4-benzoquinones, 1,4-naphthoquinone, or 1,4-anthraquinone, have been synthesized and characterized. In addition, the bisphosphine complex derived from the 1,4-naphthoquinone-bridged complex has also been prepared and characterized. Cyclic voltammetry of these complexes shows two reversible one-electron reductions at potentials 0.2 to 0.5 V less negative than their corresponding parent quinones. In the presence of acetic acid two-electron reductions of the complexes result in conversion of the quinones to hydroquinone moieties. EPR spectroscopic and computational studies of the one-electron-reduced complexes show electron delocalization from the semiquinones to the 2Fe2S moieties, thereby revealing the "noninnocent" behavior of these ligands with these catalysts.