摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Cr(CO)3{P(C6H11)3}2 | 114595-36-7

中文名称
——
中文别名
——
英文名称
Cr(CO)3{P(C6H11)3}2
英文别名
——
Cr(CO)3{P(C6H11)3}2化学式
CAS
114595-36-7
化学式
C39H66CrO3P2
mdl
——
分子量
696.895
InChiKey
YJUZMWFVHFQWFU-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    Cr(CO)3{P(C6H11)3}2氢气 作用下, 以 甲苯 为溶剂, 生成
    参考文献:
    名称:
    Synthesis of (PCy3)2Cr(CO)3 and its reactions with hydrogen, nitrogen, and other ligands
    摘要:
    DOI:
    10.1021/ja00221a055
  • 作为产物:
    描述:
    以 1,2,5-trimethyl-benzene 为溶剂, 生成 Cr(CO)3{P(C6H11)3}2
    参考文献:
    名称:
    Eckert, Juergen; Kubas, Gregory J.; White, Inorganic Chemistry, 1992, vol. 31, # 9, p. 1550 - 1551
    摘要:
    DOI:
点击查看最新优质反应信息

文献信息

  • First Bis(σ)‐borane Complexes of Group 6 Transition Metals: Experimental and Theoretical Studies
    作者:Carsten Lenczyk、Dipak Kumar Roy、Bijoy Ghosh、Johannes Schwarzmann、Ashwini K. Phukan、Holger Braunschweig
    DOI:10.1002/chem.201901075
    日期:2019.6.26
    A series of bis(σ)‐borane complexes of Group 6 transition metals were prepared by direct dihydroborane coordination to the metal center. Reaction of [M(CO)3(PCy3)2] and two dihydroboranes [DurBH2] and [(Me3Si)2NBH2] (Dur=2,3,5,6‐Me4C6H) yielded bis(σ)‐borane complexes fac‐[M(CO)3(PCy3)η2‐(H2BR)}] (R=Dur; 1: M=Cr, 2: M=W; R=N(SiMe3)2; 3: M=Cr, 4: M=W). In the case of molybdenum, we have isolated an
    通过直接将二硼烷配位到属中心制备了一系列第6组过渡属的双(σ)-硼烷络合物。[M(CO)3(PCy 3)2 ]与两种二硼烷[DurBH 2 ]和[(Me 3 Si)2 NBH 2 ](Dur = 2,3,5,6-Me 4 C 6 H)反应生成双(σ) -硼烷络合物FAC - [M(CO)3(PCY 3)η 2 - (H 2 BR)}](R = DUR; 1:M =的Cr,2:M = W; R = N (SiMe 3)2;3:M = Cr,4:M = W)。在的情况下,我们已经分离芳烃配合物(5)与[DurBH 2 ]其中DUR组充当η 6结合的配体,并用[(ME 3 Si)的2 NBH 2 ]类似的双( σ) -硼烷复合物分离,顺式,反式- [沫(CO)2(PCY 3)2 η 2 - (H 2 BN(森达3)2 }](6),辅助配体的模式不同。通过多核NMR光谱,质谱,X射线
  • Gonzalez, Alberto A.; Hoff, Carl D., Inorganic Chemistry, 1989, vol. 28, # 23, p. 4295 - 4297
    作者:Gonzalez, Alberto A.、Hoff, Carl D.
    DOI:——
    日期:——
  • Millar, John M.; Kastrup, Rodney V.; Melchior, Michael T., Journal of the American Chemical Society, 1990, vol. 112, # 26, p. 9643 - 9645
    作者:Millar, John M.、Kastrup, Rodney V.、Melchior, Michael T.、Horváth, István T.、Hoff, Carl D.、Crabtree, Robert H.
    DOI:——
    日期:——
  • Why Does D<sub>2</sub> Bind Better Than H<sub>2</sub>? A Theoretical and Experimental Study of the Equilibrium Isotope Effect on H<sub>2</sub> Binding in a M(η<sup>2</sup>-H<sub>2</sub>) Complex. Normal Coordinate Analysis of W(CO)<sub>3</sub>(PCy<sub>3</sub>)<sub>2</sub>(η<sup>2</sup>-H<sub>2</sub>)
    作者:Bruce R. Bender、Gregory J. Kubas、Llewellyn H. Jones、Basil I. Swanson、Juergen Eckert、Kenneth B. Capps、Carl D. Hoff
    DOI:10.1021/ja971009c
    日期:1997.10.1
    Vibrational data (IR, Raman and inelastic neutron scattering) and a supporting normal coordinate analysis for the complex trans-W(CO)(3)(PCy3)(2)(eta(2)-H-2) (1) and its HD and D-2 isotopomers are reported. The vibrational data and force constants support the well-established eta(2)-bonding mode for the H-2 ligand and provide unambiguous assignments for all metal-hydrogen stretching and bending frequencies. The force constant for the HH stretch, 1.3 mdyn/Angstrom, is less than one-fourth the value in free H-2 and is similar to that for the WH stretch, indicating that weakening of the H-H bond and formation of W-H bonds are well along the reaction coordinate to oxidative addition. The equilibrium isotope effect (EIE) for the reversible binding of dihydrogen (H-2) and dideuterium (D-2) to 1 and 1-d(2) has been calculated from measured vibrational frequencies for 1 and 1-d(2). The-calculated EIE is ''inverse'' (1-d(2) binds D-2 better than 1 binds H-2), With K-H/K-D = 0.78 at 300 K. The EIE calculated from vibrational frequencies may be resolved into a large normal mass and moment of inertia factor (MMI = 5.77), an inverse vibrational excitation factor (EXC=0.67), and an inverse zero-point energy factor (ZPE=0.20), where EIE = MMI x EXC x ZPE. An analysis of the zero-point energy components of the EIE shows that the large decrease in the HH stretching frequency (force constant) predicts a large normal EIE but that zero-point energies from five new vibrational modes (which originate from translational and rotational degrees of freedom from hydrogen) offset the change in zero-point energy from the H-2(D-2) stretch. The calculated EIE is compared to experimental data obtained for the binding of H-2 or D-2 to Cr(CO)(3)(PCy3)(2) over the temperature range 12-36 degrees C in THF solution. For the binding of H-2 Delta H=-6.8+/-0.5 kcal mol(-1) and Delta S=-24.7+/-2.0 cal mol(-1) deg(-1); for D-2 Delta H=-8.6+/-0.5 kcal/mol and Delta S=-30.0+/-2.0 cal/(mol deg). The EIE at 22 degrees C has a value of K-H/K-D=0.65+/-0.15. Comparison of the equilibrium constants for displacement of N-2 by H-2 or D-2 in the complex W(CO)(3)(PCy3)(2)(N-2) in THF yielded a value of K-H/K-D=0.70+/-0.15 at 22 degrees C.
  • Zhang, Kai; Gonzalez, Alberto A.; Mukerjee, Shakti L., Journal of the American Chemical Society, <hi>1991</hi>, vol. 113, # 24, p. 9170 - 9176
    作者:Zhang, Kai、Gonzalez, Alberto A.、Mukerjee, Shakti L.、Chou, Shou-Jiau、Hoff, Carl D.、Kubat-Martin, Kimberly A.、Barnhart, David、Kubas, Gregory J.
    DOI:——
    日期:——
查看更多

同类化合物

相关结构分类