(PNP)MMe (9). The N−H oxidative addition reactions are more facile. Both the N−H and N-Me oxidative addition reactions are kinetically inhibited by liberated phosphines from the LnM0 starting material. Thermolysis of (PNP)MMe (9, M = Ni, Pd, Pt) in the presence of excess PPh3 does not lead to N−C reductive elimination, thus indicating irreversibility of the N−C oxidative addition.
基于双(邻膦基芳基)胺亚结构的螯合型
PNP
配体的反应,其中包含NH(
PN(H)P,1)或N-Me(
PN(Me)P,2)中心部分与第10组配合物已被探索。与MCl 2(MCl 2 = NiCl 2,(COD)PdCl 2,(COD)PtCl 2,COD =
1,5-环辛二烯)的反应很容易进行,会丢失HCl或MeCl并形成(
PNP)MCl(7)其中
PNP是阴离子,子午酰胺基-
PNP
配体。(
PNP)MeCl与MeMgCl烷基化得到(
PNP)MMe(9),(
PNP)MCl与过量的NaBH 4反应提供(
PNP)
MH(8)。(
PNP)
MH(8)化合物与CDCl 3反应以再生(
PNP)MCl(7)。与M = Ni或Pd相比,M = Pt的转换7 → 8 → 7 → 9变慢。确定(
PNP)PdH(8b-Pd)和(
PNP)PdMe(9b-Pd)的固态结构。在任何一种结构中,Pd的周围环境都是近似正方形的平面