摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

trans-[Pd(3,5-C6Cl2F3)Cl(AsPh3)2] | 213135-41-2

中文名称
——
中文别名
——
英文名称
trans-[Pd(3,5-C6Cl2F3)Cl(AsPh3)2]
英文别名
trans-Pd(AsPh3)2(3,5-dichloro-2,4,6-trifluorophenyl)Cl
trans-[Pd(3,5-C6Cl2F3)Cl(AsPh3)2]化学式
CAS
213135-41-2
化学式
C42H30As2Cl3F3Pd
mdl
——
分子量
954.318
InChiKey
ZTHSTBHGTIPKLV-UHFFFAOYSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    trans-[Pd(3,5-C6Cl2F3)Cl(AsPh3)2] 、 sodium iodide 以 二氯甲烷丙酮 为溶剂, 以93%的产率得到trans-[Pd(3,5-C6Cl2F3)I(AsPh3)2]
    参考文献:
    名称:
    Mechanism of the Stille Reaction. 1. The Transmetalation Step. Coupling of R1I and R2SnBu3 Catalyzed by trans-[PdR1IL2] (R1 = C6Cl2F3; R2 = Vinyl, 4-Methoxyphenyl; L = AsPh3)
    摘要:
    The so far accepted mechanism of the Stille reaction (palladium-catalyzed cross-coupling of organotin reagents with organic electrophiles) is criticized. Based on kinetic studies on catalytic reactions, and on reactions with isolated intermediates, a corrected mechanism is proposed. The couplings between (RI)-I-1 (1) (R-1 = C-6- Cl2F3 3,5-dichlorotrifluorophenyl) and (RSnBu3)-Sn-2 (R-2 = CH=CH2, 2a; C6H4-4-OCH3, 2b), catalyzed by trans-[(PdRI)-I-1(AsPh3)(2)] (3a), give R-1-R-2 and obey a first-order law, r(obs) = a[3a][2a]/(b + [AsPh3]), with a (2.31 +/- 0.09) x 10(-5) s(-1) and b = (6.9 +/- 0.3) x 10(-4) mol L-1, for [1] [2a] = 0-0.2 mol L-1, [3a] = 0-0.02 mol L-1, and [AsPh3] = 0-0.07 mol L-1, at 322.6 K in THF, The only organopalladium(II) intermediate detected under catalytic conditions is 3a. The apparent activation parameters found for the coupling of 1 with 2a support an associative transmetalation step (Delta H-obs(double dagger) = 50 +/- 2 kJ mol(-1), Delta S-obs(double dagger) = -155 +/- 7 J K-1 mol(-1) in THF; and Delta H-obs(double dagger) = 70.0 +/- 1.7 kJ mol(-1), Delta S-obs(double dagger) = -104 +/- 6 J K-l mol(-1) in chlorobenzene, with [1](0) = [2](0) = 0.2 mol L-1, [3a] = 0.01 mol L-1). The reactions of 2a with isolated trans-[PdR1 X(AsPh3)(2)] (X = halide) show rates Cl > Br > I. From these observations, the following mechanism is proposed: Oxidative addition of (RX)-X-1 to PdLn, gives cis-[(PdRXL2)-X-1], which isomerizes rapidly to trans-[(PdRXL2)-X-1]. This trans complex reacts with the organotin compound following a S-E(2)(cyclic) mechanism, with release of AsPh3 (which explains the retarding effect of the addition of L), to give a bridged intermediate [(PdRL)-L-1(mu-X)(mu-R-2)SnBu3]. In other words, an L-for-R-2 substitution on the palladium leads R-2 and R-1 to mutually cis positions. From there the elimination of XSnBu3 yields a three-coordinate species cis-[(PdRRL)-R-1-L-2], which readily gives the coupling product R-1-R-2.
    DOI:
    10.1021/ja9742388
  • 作为产物:
    描述:
    三苯胂丙酮 为溶剂, 以94%的产率得到trans-[Pd(3,5-C6Cl2F3)Cl(AsPh3)2]
    参考文献:
    名称:
    Mechanism of the Stille Reaction. 1. The Transmetalation Step. Coupling of R1I and R2SnBu3 Catalyzed by trans-[PdR1IL2] (R1 = C6Cl2F3; R2 = Vinyl, 4-Methoxyphenyl; L = AsPh3)
    摘要:
    The so far accepted mechanism of the Stille reaction (palladium-catalyzed cross-coupling of organotin reagents with organic electrophiles) is criticized. Based on kinetic studies on catalytic reactions, and on reactions with isolated intermediates, a corrected mechanism is proposed. The couplings between (RI)-I-1 (1) (R-1 = C-6- Cl2F3 3,5-dichlorotrifluorophenyl) and (RSnBu3)-Sn-2 (R-2 = CH=CH2, 2a; C6H4-4-OCH3, 2b), catalyzed by trans-[(PdRI)-I-1(AsPh3)(2)] (3a), give R-1-R-2 and obey a first-order law, r(obs) = a[3a][2a]/(b + [AsPh3]), with a (2.31 +/- 0.09) x 10(-5) s(-1) and b = (6.9 +/- 0.3) x 10(-4) mol L-1, for [1] [2a] = 0-0.2 mol L-1, [3a] = 0-0.02 mol L-1, and [AsPh3] = 0-0.07 mol L-1, at 322.6 K in THF, The only organopalladium(II) intermediate detected under catalytic conditions is 3a. The apparent activation parameters found for the coupling of 1 with 2a support an associative transmetalation step (Delta H-obs(double dagger) = 50 +/- 2 kJ mol(-1), Delta S-obs(double dagger) = -155 +/- 7 J K-1 mol(-1) in THF; and Delta H-obs(double dagger) = 70.0 +/- 1.7 kJ mol(-1), Delta S-obs(double dagger) = -104 +/- 6 J K-l mol(-1) in chlorobenzene, with [1](0) = [2](0) = 0.2 mol L-1, [3a] = 0.01 mol L-1). The reactions of 2a with isolated trans-[PdR1 X(AsPh3)(2)] (X = halide) show rates Cl > Br > I. From these observations, the following mechanism is proposed: Oxidative addition of (RX)-X-1 to PdLn, gives cis-[(PdRXL2)-X-1], which isomerizes rapidly to trans-[(PdRXL2)-X-1]. This trans complex reacts with the organotin compound following a S-E(2)(cyclic) mechanism, with release of AsPh3 (which explains the retarding effect of the addition of L), to give a bridged intermediate [(PdRL)-L-1(mu-X)(mu-R-2)SnBu3]. In other words, an L-for-R-2 substitution on the palladium leads R-2 and R-1 to mutually cis positions. From there the elimination of XSnBu3 yields a three-coordinate species cis-[(PdRRL)-R-1-L-2], which readily gives the coupling product R-1-R-2.
    DOI:
    10.1021/ja9742388
点击查看最新优质反应信息

文献信息

  • Strong Metallophilic Interactions in the Palladium Arylation by Gold Aryls
    作者:Mónica H. Pérez-Temprano、Juan A. Casares、Ángel R. de Lera、Rosana Álvarez、Pablo Espinet
    DOI:10.1002/anie.201108043
    日期:2012.5.14
    It's the second step that counts: Arylation of Pd by Au takes place through transition states and intermediates featuring strong Au⋅⋅⋅Pd metallophilic interactions (see picture). However, the aryl transfer from [AuArL] to [PdArClL2] is thermodynamically disfavored and will not occur unless an irreversible ArAr coupling from [PdAr2L2] follows.
    这是至关重要的第二步:Au通过过渡态和具有强Au·⋅·Pd亲属相互作用的中间体进行Pd的化(见图)。然而,从[AuArL]芳转移到[PDArClL 2 ]在热力学上是不受欢迎,除非一个不可逆转的Ar不会发生从[PDAR联接2大号2 ]如下。
  • Mechanism of the Stille Reaction. 2. Couplings of Aryl Triflates with Vinyltributyltin. Observation of Intermediates. A More Comprehensive Scheme
    作者:Arturo L. Casado、Pablo Espinet、Ana M. Gallego
    DOI:10.1021/ja001511o
    日期:2000.12.1
    The mechanism of the [PdL4]-catalyzed couplings between R-OTf (R = pentahalophenyl; L = PPh3, AsPh3) and Sn(CH=CH2)Bu-3 has been studied. The addition of LiCl favors the coupling for L = AsPh3 in THF but retards it for L = PPh3. Separate experiments show that for L = AsPhs, LiCl accelerates the otherwise very slow and rate-determining oxidative addition of the aryl triflate to [PdL4], leading to trans[PdRClL2]. Therefore, the overall process is accelerated. For L = PPh3, the rate-determining step is the transmetalation. Complex trans-[PdRXL2],with X = Cl, is formed in the presence of LiCl, whereas an equilibrium mixture mainly involving species with X = TfO, L, or S (S = solvent) is established in the absence of LiCl. Since the transmetalation is slower for X = Cl than for the other complexes, the overall process is retarded by addition of LiCl. The transmetalation in complexes trans-[PdRXL2], with X = Cl, follows the S(E)2(cyclic) mechanism proposed in Part 1 (Casado, A. L.; Espinet, P. J. Am. Chem. Sec. 1998, 120, 8978-8985), giving the coupling product R-CH=CH2 directly. For X = TfO or, L rather stable intermediates trans[PdR(CH=CH2)L-2] are detected, Supporting an SE2(open) mechanism. The I;ey:intermediates undergoing transmetalation in the conditions arid solvents most commonly used in the literature have been identified.;The operation of S(E)2(cyclic) and S(E)2(open) pathways emphasizes common aspects of the Stille reaction with the Hiyama reaction where, using (RSiF3)-Si-2 that is chiral at the alpha -carbon of R retention or inversion gt the transmetalated chiral carbon can be-induced. This helps us to understand the contradictory stereochemical outcomes in the literature for Stille couplings using (RSnR3)-Sn-2 derivatives that are chiral Bt the a-carbon of R-2 and suggests that stereocontrol of the Stille reaction might be achieved.
查看更多