参考文献:M Chen, V Vijay, Q Shi, Z Liu, H Fang, W Tong. 美国食品药品监督管理局批准的药物标签用于研究药物诱导的肝损伤,《药物发现今日》,16(15-16):697-703, 2011. PMID:21624500 DOI:10.1016/j.drudis.2011.05.007
M Chen, A Suzuki, S Thakkar, K Yu, C Hu, W Tong. DILIrank:按人类发展药物诱导肝损伤风险排名的最大参考药物清单。《药物发现今日》2016, 21(4): 648-653. PMID:26948801 DOI:10.1016/j.drudis.2016.02.015
References:M Chen, V Vijay, Q Shi, Z Liu, H Fang, W Tong. FDA-Approved Drug Labeling for the Study of Drug-Induced Liver Injury, Drug Discovery Today, 16(15-16):697-703, 2011. PMID:21624500 DOI:10.1016/j.drudis.2011.05.007
M Chen, A Suzuki, S Thakkar, K Yu, C Hu, W Tong. DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today 2016, 21(4): 648-653. PMID:26948801 DOI:10.1016/j.drudis.2016.02.015
Intravenous (IV) iron is used to treat iron-deficiency anemia in patients with chronic kidney disease (CKD). Ferumoxytol is a novel iron formulation administered rapidly as two IV boluses of 510 mg each. In this placebo-controlled, double-blind, parallel-group study, 58 healthy volunteers received ferumoxytol in two 510 mg doses administered 24 h apart. Population pharmacokinetics (PK) analysis was conducted, and a two-compartment open model with zero-order input and Michaelis-Menten elimination was found to best describe the data. The population mean estimates for volume of distribution of the central compartment (V(1)), maximal elimination rate (V(max)), and ferumoxytol concentration at which rate of metabolism would be one-half of V(max) (K(m)) were 2.71 l, 14.3 mg/hr, and 77.5 mg/L, respectively. When the effect of body weight on V(1) was added in the analysis, interindividual variability was found to be reduced. A noncompartmental analysis of two simulated 510-mg ferumoxytol doses was also performed to provide clinically interpretable data on half life and exposure. Ferumoxytol given as two consecutive 510-mg doses was well tolerated.
The pharmacokinetic (PK) behavior of Feraheme has been examined in healthy subjects and in patients with CKD stage 5D on hemodialysis. Feraheme exhibited dose-dependent, capacity-limited elimination from plasma with a half life of approximately 15 hours in humans. The clearance (CL) was decreased by increasing the dose of Feraheme. Volume of distribution (Vd) was consistent with plasma volume, and the mean maximum observed plasma concentration (Cmax) and terminal half-life (t1/2) values increased with dose. The estimated values of CL and Vd following two 510 mg doses of Feraheme administered intravenously within 24 hours were 69.1 mL/hr and 3.16 L, respectively. The Cmax and time of maximum concentration (tmax) were 206 mcg/mL and 0.32 hr, respectively. Rate of infusion had no influence on Feraheme PK parameters. No gender differences in Feraheme PK parameters were observed.