摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 137192-25-7

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
137192-25-7
化学式
CH10O6Ru
mdl
——
分子量
219.157
InChiKey
HSDYKNHERDCNJH-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    氧-17原子 以 further solvent(s) 为溶剂, 生成
    参考文献:
    名称:
    d(6)八面体钌(II)五元水配合物的反式和顺式水反应性:实验和密度泛函理论研究(1)(,)(2)。
    摘要:
    钌(II)的六水配合物是合成具有[Ru(H(2)O-ax)(H(2)O-eq)(4)L](2+)的同构化合物的理想原料通式。我们研究了一系列配合物,其中L = H(2)O,MeCN,Me(2)SO,H(2)C = CH(2),CO和F(2)C = CH(2)。我们评估了L对循环伏安响应,对水分子交换反应的速率和机理以及对通过密度泛函理论(DFT)计算的结构的影响。如所预期的,形式的氧化还原电势E度(+ 2 / + 3)随着配体的π-接受能力而增加。对于L = N(2),氧化为Ru(III)之后是用溶剂分子快速取代二氮,这表明Ru(III)-N(2)键的稳定性很差。在水交换反应之后进行(17)O NMR光谱分析。在所选实例上进行的可变压力和可变温度动力学研究均符合用于交换的解离活化模式。在[Ru(H(2)O)(5)(H(2)C = CH(2))](2+)(DeltaV(ax)()的轴向和赤道
    DOI:
    10.1021/ic970783y
  • 作为产物:
    描述:
    一氧化碳重水 为溶剂, 生成
    参考文献:
    名称:
    Mechanism of Complex Formation of Ruthenium(II) Aquacomplexes with H2CCH2, MeCN, Me2SO, and CO:  Metal−Water Bond Rupture as Rate-Determining Step
    摘要:
    The reaction [Ru(H2O)(6)](2+) + L -->(kf) [RU(H2O)(5)L](2+) + H2O was followed as a function of temperature and ethylene concentration (up to 40 MPa) using a homemade high gas pressure NMR microreactor. The reaction was first order in H2C=CH2 with 10(3)kf(298)/kg mol(-1) s(-1) = 1.22 +/- 0.06, Delta H(f)double dagger/kJ mol(-1) = 76.9 +/- 2, and Delta S(f)double dagger/J K-1 mol(-1) = -42.9 +/- 8. These results confirm previous works on mono-complex formation reactions where an Id mechanism was proposed. The reaction [Ru(H2O)5L]2+ + *L reversible arrow(kL) [Ru(H2O)(5)*L](2+) + L of exchange of L on the mono-complex was followed for L = H2C=CH2 (10(3)k(L)/kg mol(-1) s(-1) = 10.8 at 298.2 K), Me2SO (0.35 at 278.5 K), and CO (0.052 at 298.3 K); the rate-determining step is the rupture of the Ru-(HOax)-O-2 bond with trans-Ru(H2O)(4)L-2](2+) as reaction intermediate. Due to the trans effect exercised by these strong pi-accepting ligands, the ligand exchange reaction is faster than the mono-complex formation reactions. The cis-bis-complex formation reaction, [Ru(H2O)(5)L](2+) + L -->(kcis) cis-[Ru(H2O)(4)L-2](2+) + H2O, was also investigated for L = MeCN (10(3)k(cis)/kg mol(-1) s(-1) = 0.111 at 298.1 K), Me2SO (0.019 at 321.6 K), and H2C=CH2 (0.007 at 298.1 K, Delta H(cis)double dagger/kJ mol(-1) = 129.9 +/- 4, and Delta S(cis)double dagger/J K-1 mol(-1) = +92.0 +/- 11); here, too, the Ru-H2Oeq bond breaking is rate determining, but due to the decrease of the lability of water molecules cis to pi-accepting ligands, these reactions are much slower. In the case of MeCN, the reaction scheme includes the formation of the trans-bis-complex and of the mer-triscomplex. As a general rule, the rate of these complex formation reactions,of dissociative nature, can be predicted from the oxygen-17 determined water exchange rates.
    DOI:
    10.1021/ic980628z
点击查看最新优质反应信息