摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(μ-N2)[Mo(P(i)Pr3)2(CO)3]2 | 100995-16-2

中文名称
——
中文别名
——
英文名称
(μ-N2)[Mo(P(i)Pr3)2(CO)3]2
英文别名
(μ2-N2)[Mo(CO)3(P(i-Pr)3)2]2
(μ-N2)[Mo(P(i)Pr3)2(CO)3]2化学式
CAS
100995-16-2
化学式
C42H84Mo2N2O6P4
mdl
——
分子量
1028.91
InChiKey
FSKBPEVMTRQIHO-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    过渡金属的分子氢配合物。2. W(CO)3(PCy3)2 和 W(CO)3(P-iso-Pr3)2, .eta.2-H2 络合物前体的制备、结构和反应性,表现出金属.cntdot..cntdot.. cntdot.氢-碳相互作用
    摘要:
    描述了配位和电子不饱和配合物 M(CO)/sub 3/(PR/sub 3/)/sub 2/ (M = Mo, W; R = Cy, i-Pr) 的合成、反应性和分子结构. 与 W(CO)/sub 3/(PCy/sub 3/)/sub 2/ 可逆结合的配体包括 H/sub 2/、N/sub 2/、C/sub 2/H/sub 4/、H/ sub 2/O、ROH和噻吩;不可逆结合的配体是 MeCN、吡啶、NH/sub 3/、CyNH/sub 2/ 和 PR/sub 3/。W(CO)/sub 3/(PCy/sub 3/)/sub 2/ 和 W(CO)/sub 3/(P(i-Pr)/sub 3/)/sub 2/ 的结构涉及初期分子内将远端膦 CH 键氧化加成到金属上。W(CO)/sub 3/(PCy/sub 3/)/sub 2/ 中的三中心 M...HC 相互作用具有 WH(11a)-C(11) =
    DOI:
    10.1021/ja00269a027
  • 作为产物:
    描述:
    三羰基环庚三烯基钼三异丙基膦 在 N2 作用下, 以 甲苯正戊烷 为溶剂, 生成 (μ-N2)[Mo(P(i)Pr3)2(CO)3]2
    参考文献:
    名称:
    过渡金属的分子氢配合物。2. W(CO)3(PCy3)2 和 W(CO)3(P-iso-Pr3)2, .eta.2-H2 络合物前体的制备、结构和反应性,表现出金属.cntdot..cntdot.. cntdot.氢-碳相互作用
    摘要:
    描述了配位和电子不饱和配合物 M(CO)/sub 3/(PR/sub 3/)/sub 2/ (M = Mo, W; R = Cy, i-Pr) 的合成、反应性和分子结构. 与 W(CO)/sub 3/(PCy/sub 3/)/sub 2/ 可逆结合的配体包括 H/sub 2/、N/sub 2/、C/sub 2/H/sub 4/、H/ sub 2/O、ROH和噻吩;不可逆结合的配体是 MeCN、吡啶、NH/sub 3/、CyNH/sub 2/ 和 PR/sub 3/。W(CO)/sub 3/(PCy/sub 3/)/sub 2/ 和 W(CO)/sub 3/(P(i-Pr)/sub 3/)/sub 2/ 的结构涉及初期分子内将远端膦 CH 键氧化加成到金属上。W(CO)/sub 3/(PCy/sub 3/)/sub 2/ 中的三中心 M...HC 相互作用具有 WH(11a)-C(11) =
    DOI:
    10.1021/ja00269a027
点击查看最新优质反应信息

文献信息

  • Comparison of Thermodynamic and Kinetic Aspects of Oxidative Addition of PhE−EPh (E = S, Se, Te) to Mo(CO)<sub>3</sub>(PR<sub>3</sub>)<sub>2</sub>, W(CO)<sub>3</sub>(PR<sub>3</sub>)<sub>2</sub>, and Mo(N[<sup>t</sup>Bu]Ar)<sub>3</sub> Complexes. The Role of Oxidation State and Ancillary Ligands in Metal Complex Induced Chalcogenyl Radical Generation
    作者:James E. McDonough、John J. Weir、Kengkaj Sukcharoenphon、Carl D. Hoff、Olga P. Kryatova、Elena V. Rybak-Akimova、Brian L. Scott、Gregory J. Kubas、Arjun Mendiratta、Christopher C. Cummins
    DOI:10.1021/ja063250+
    日期:2006.8.1
    PhE-EPh (E = S, Se, Te) to the M(0) complexes M(PiPr3)2(CO)3 (M = Mo, W) to form stable complexes M(*EPh)(PiPr3)2(CO)3 are reported and compared to analogous data for addition to the Mo(III) complexes Mo(N[tBu]Ar)3 (Ar = 3,5-C6H3Me2) to form diamagnetic Mo(IV) phenyl chalcogenide complexes Mo(N[tBu]Ar)3(EPh). Reactions are increasingly exothermic based on metal complex, Mo(PiPr3)2(CO)3 < W(PiPr3)2(CO)3 <
    PhE-EPh (E = S, Se, Te) 氧化加成到 M(0) 复合物 M(PiPr3)2(CO)3 (M = Mo, W) 形成稳定复合物 M(*EPh)(报告了 PiPr3)2(CO)3 并与添加到 Mo(III) 配合物 Mo(N[tBu]Ar)3 (Ar = 3,5-C6H3Me2) 以形成抗磁性 Mo(IV) 苯基属元素化物的类似数据进行比较络合物 Mo(N[tBu]Ar)3(EPh)。基于属络合物,反应越来越放热,Mo(PiPr3)2(CO)3 < W(PiPr3)2(CO)3 < Mo(N[tBu]Ar)3,就硫属化物而言,PhTe-TePh < PhSe -SePh < PhS-SPh。这些数据用于计算 LnM-EPh 键强度,用于估计当二硫属化物与特定属络合物相互作用时产生游离 *EPh 自由基的能量。为了测试这些数据,通过停流动力学研究了 Mo(N[tBu]Ar)3
  • Experimental and Computational Studies of Binding of Dinitrogen, Nitriles, Azides, Diazoalkanes, Pyridine, and Pyrazines to M(PR<sub>3</sub>)<sub>2</sub>(CO)<sub>3</sub> (M = Mo, W; R = Me, <sup>i</sup>Pr).
    作者:Patrick Achord、Etsuko Fujita、James T. Muckerman、Brian Scott、George C. Fortman、Manuel Temprado、Xiaochen Cai、Burjor Captain、Derek Isrow、John J. Weir、James Eric McDonough、Carl D. Hoff
    DOI:10.1021/ic900764e
    日期:2009.8.17
    The enthalpies of binding of a number of N-donor ligands to the complex Mo((PPr3)-Pr-i)(2)(CO)(3) in toluene have been determined by solution calorimetry and equilibrium measurements. The measured binding enthalpies span a range of similar to 10 kcal mol(-1): Delta H-binding=-8.8 +/- 11.2 (N-2-Mo((PPr3)-Pr-i)(2)(CO)(3)); -10.3 +/- 0.8 (N-2); -11.2 +/- 0.4 (AdN(3) (Ad=1-adamantyl)); -13.8 +/- 0.5(N2CHSiMe3); -14.9 +/- 0.9 (pyrazine=pz); -14.8 +/- 0.6 (2,6-Me(2)PZ); -15.5 +/- 1.8 (Me2NCN); -16.6 +/- 0.4 (CH3CN); -17.0 +/- 0.4 (pyridine); -17.5 +/- 0.8 ([4-CH(3)pz][PF6] (in tetrahydrofuran)); -17.6 +/- 0.4 (C6H5CN); -18.6 +/- 1.8 (N2CHC (=O)OEt); and -19.3 +/- 2.5 kcal mol(-1) (pz)Mo((PPr3)-Pr-i)(2)(CO)(3)). The value for the isonitrile AdNC (-29.0 +/- 0.3) is 12.3 kcal mol(-1) more exothermic than that of the nitrile AdCN (-16.7 +/- 0.6 kcal mol(-1)). The enthalpies of binding of a range of arene nitrile ligands were also studied, and remarkably, most nitrile complexes were clustered within a 1 kcal mol(-1) range despite dramatic color changes and variation of v(CN). Computed structural and spectroscopic parameters for the complexes Mo ((PPr3)-Pr-i)(2)(CO)(3)L are in good agreement with experimental data. Computed binding enthalpies for Mo((PPr3)-Pr-i)(2)(CO)(3)L exhibit considerable scatter and are generally smaller compared to the experimental values, but relative agreement is reasonable. Computed enthalpies of binding using a larger basis set for Mo(PMe3)(2)(CO)(3)L show a better fit to experimental data than that for Mo((PPr3)-Pr-i)(2)(CO)(3)L using a smaller basis set. Crystal structures of Mo((PPr3)-Pr-i)(2)(CO)(3)(AdCN), W((PPr3)-Pr-i)(2)(CO)(3)(Me2NCN), W ((PPr3)-Pr-i)(2)(CO)(3)(2,6-F2C6H3CN), W((PPr3)-Pr-i)(2)(CO)(3)(2,4,6-Me3C6H2CN), W((PPr3)-Pr-i)(2)(CO)(3)(2,6-Me(2)pz), W((PPr3)-Pr-i)(2)(CO)(3)(AdCN), Mo((PPr3)-Pr-i)(2)(CO)(3)(AdNC), and W((PPr3)-Pr-i)(2)(CO)(3)(AdNC) are reported.
查看更多