摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 111903-17-4

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
111903-17-4
化学式
C37H80MoOP4
mdl
——
分子量
760.877
InChiKey
MXWSIEFKQBUKKT-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    在 H2 作用下, 以 further solvent(s) 为溶剂, 生成
    参考文献:
    名称:
    分子氢络合物。5. eta.2-H2 与二氢化物配位的电子控制。MoH2(CO)(R2PC2H4PR2)2 的二氢化物结构对于 R = Et,iso-Bu 与 .eta.2-H2 对于 R = Ph
    摘要:
    自从他们的发现以来,过渡金属分子-氢 (M-eta/sup 2/-H/sub 2/) 配合物的新例子已经以越来越快的速度建立起来,包括以前作为经典氢化物配制的几种配合物(例如,FeH /sub 4/ (PEtPh/sub 2/)/sub 3/)。已在溶液中观察到二氢和二氢化物配体之间的平衡,/sup 2a,2d/ 强调 eta/sup 2/-H/sub 2/ 复合物可以被认为是氢化物的互变异构体,而不仅仅是在氢化物形成中被阻止的中间体。关于这些代表σ键与金属配位的第一个例子的配合物还有很多有待了解。特别是,稳定 H/sub 2/ 结合的电子(例如,配体碱度)和空间(配体体积)因素尚未完全了解。
    DOI:
    10.1021/ja00260a043
  • 作为产物:
    描述:
    以 not given 为溶剂, 生成
    参考文献:
    名称:
    分子氢络合物。5. eta.2-H2 与二氢化物配位的电子控制。MoH2(CO)(R2PC2H4PR2)2 的二氢化物结构对于 R = Et,iso-Bu 与 .eta.2-H2 对于 R = Ph
    摘要:
    自从他们的发现以来,过渡金属分子-氢 (M-eta/sup 2/-H/sub 2/) 配合物的新例子已经以越来越快的速度建立起来,包括以前作为经典氢化物配制的几种配合物(例如,FeH /sub 4/ (PEtPh/sub 2/)/sub 3/)。已在溶液中观察到二氢和二氢化物配体之间的平衡,/sup 2a,2d/ 强调 eta/sup 2/-H/sub 2/ 复合物可以被认为是氢化物的互变异构体,而不仅仅是在氢化物形成中被阻止的中间体。关于这些代表σ键与金属配位的第一个例子的配合物还有很多有待了解。特别是,稳定 H/sub 2/ 结合的电子(例如,配体碱度)和空间(配体体积)因素尚未完全了解。
    DOI:
    10.1021/ja00260a043
点击查看最新优质反应信息

文献信息

  • Experimental and Theoretical Studies of Bonding and Oxidative Addition of Germanes and Silanes, EH<sub>4</sub><sub>-</sub><i><sub>n</sub></i>Ph<i><sub>n</sub></i> (E = Si, Ge; <i>n</i> = 0−3), to Mo(CO)(diphosphine)<sub>2</sub>. The First Structurally Characterized Germane σ Complex
    作者:Jean L. Vincent、Steven Luo、Brian L. Scott、Ray Butcher、Clifford J. Unkefer、Carol J. Burns、Gregory J. Kubas、Agusti Lledós、Feliu Maseras、Jaume Tomàs
    DOI:10.1021/om030569j
    日期:2003.12.1
    Reaction of GeH4 and GeH3Ph with the agostic complex Mo(CO)(dppe)(2) (dppe = Ph2PC2H4PPh2) provides germane sigma complexes Mo(CO)(eta(2) -GeH4-nPhn)(dppe)(2) (n = 0, 1). The coordination in these complexes has been assigned as (eta(2) -Ge-H) on the basis of NMR and IR spectroscopy and by comparison to the analogous complexes of silanes. When the more electron-rich phosphine depe (depe = Et2PC2H4PEt2) is used, oxidative addition (OA) products MoH(GeH3)(CO)(depe)(2) and MoH(GeH2Ph)(CO)(depe)(2) are isolated (NMR and X-ray evidence). However, when the secondary organogermane GeH2Ph2 is used in the depe system, the eta(2)-complex Mo(CO)(eta(2)-GeH2Ph2)(depe)(2) is obtained. This complex was characterized by X-ray crystallography and NMR and IR spectroscopy. The Mo(CO)(eta(2)-GeH3Ph)(dppe)(2) and MO(CO)(eta(2)-GeH2Ph2)(depe)(2) complexes were found to be in tautomeric equilibrium with their OA products in solution. Structure and bonding comparisons are made to the analogous silane complexes, e.g., Mo(CO)(eta(2) -SiH2Ph2)(depe)(2), the X-ray structure for which is also reported. The Ge-H bonds undergo OA much more easily than Si-H, and to obtain further insight into the activation processes, ab initio DFT calculations have been performed on Mo(CO)(EH(4-n)vin(n))(dhpe)(2) model complexes (E = Si, Ge; n = 0-3; dhpe = H2PCH2CH2PH2; vin = CH=CH2) and also the analogous H-2 complex. Because the ease of the whole OA process is a balance between the E-H bonding energy and Mo-E bonding energy, it can be concluded that the factor that makes OA of the Ge-H bond easier than that for Si-H is the relative weakness of the Ge-H bond, despite the fact that the Mo-Ge bond is also weaker. This competition between both factors is also seen for OA of H-2, for which although the Mo-H bonding energy is much higher than Mo-Si and Mo-Ge bonding energies, the H-H bond is also significantly stronger than the Si-H and Ge-H bonds. In general, the ease of OA of molecular hydrogen is between that of germanes and silanes. Calculations show that for alkanes the OA is much more difficult because the loss of the high C-H bond energy (comparable to or greater than that for H-H) is not as well compensated for by the energy of formation of the Mo-C bond due to the weakness of the Mo-C bond.
  • Synthesis and X-ray Crystal Structures of {Mo(CO)(Et2PC2H4PEt2)2}2(.mu.-N2) with an End-On Bridging Dinitrogen Ligand and Mo(CO)(Bui2PC2H4PBui2)2 Containing an Agostic Mo.cntdot..cntdot..cntdot.H-C Interaction
    作者:Xiao-Liang Luo、Gregory J. Kubas、Carol J. Burns、Ray J. Butcher、Jeffrey C. Bryan
    DOI:10.1021/ic00130a022
    日期:1995.12
    The compound formed by the reaction of trans-Mo(N-2)(2)(Et(2)PC(2)H(4)PEt(2))(2) with ethyl acetate in refluxing toluene under argon has been reformulated as the bridging dinitrogen complex Mo(CO)(Et(2)PC(2)H(4)PEt(2))(2)}(2)(mu-N-2) (1), in contrast with the previously proposed formulation of Mo(CO)(Et(2)PC(2)H(4)PEt(2))(2) (2). In refluxing p-xylene and under argon, compound 1 eliminates the bridging dinitrogen ligand to form the nitrogen-free compound 2. The reaction of trans-Mo(N-2)(2)(Bu(2)(i)PC(2)H(4)PBu(2)(i))(2) with ethyl acetate in refluxing toluene under argon gives directly the nitrogen-free compound Mo(CO)(Bu(2)(i)PC(2)H(4)PBu(2)(i))(2) (3). The molecular structures of compounds 1 and 3 have been determined by single-crystal X-ray diffraction studies. Compound 1 contains an end-on bridging dinitrogen ligand. Compound 3 attains a formal 18-electron configuration by virtue of an agostic Mo ... H-C interaction between the molybdenum atom and an aliphatic gamma-C-H bond of the alkyldiphosphine ligand. On the basis of the agostic Mo ... C and Mo ... H distances, the agostic interaction in 3 appears to be stronger than that in the related compound Mo(CO)(Ph(2)PC(2)H(4)PPh(2))(2) which involves an ortho aromatic C-H bond of the diphosphine ligand. Crystallographic data for 1: monoclinic, space group C2/c, a = 24.270(2) Angstrom, b = 44.233(4) Angstrom, c = 20.378(2) Angstrom, beta = 90.725(9)degrees, V = 21875(3) Angstrom(3), Z = 16, and R = 0.048. Crystallographic data for 3: orthorhombic, space group Pna2(1), a = 18.332(4) Angstrom, b = 22.066(4) Angstrom, c = 10.589(2) Angstrom, V = 4283(2) Angstrom(3), Z = 4, and R = 0.034.
  • Kubas, Gregory J.; Burns, Carol J.; Eckert, Juergen, Journal of the American Chemical Society, 1993, vol. 115, # 2, p. 569 - 581
    作者:Kubas, Gregory J.、Burns, Carol J.、Eckert, Juergen、Johnson, Susanna W.、Larson, Allen C.、Vergamini, Phillip J.、Unkefer, Clifford J.、Khalsa、Jackson, Sarah A.、Eisenstein, Odile
    DOI:——
    日期:——
查看更多