摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 134882-90-9

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
134882-90-9
化学式
C24H20B*C45H47IrP3
mdl
——
分子量
1192.24
InChiKey
ICHBJINTLYGEIC-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    1,2-萘醌二氯甲烷 为溶剂, 生成
    参考文献:
    名称:
    Co(III),Rh(III)和Ir(III)儿茶酚酸酯络合物吸收和转移氧气
    摘要:
    摘要已合成了大量通式为[(triphos)M(Cat)] Y的五配位金属儿茶酚盐配合物,并通过化学,光谱和电化学技术对其进行了表征(MCo,Rh,Ir; Cat = 9, 10-邻苯二酚邻苯二甲酸酯,1,2-萘邻苯二甲酸酯,3,5-二叔丁基邻苯二甲酸酯,4-甲基邻苯二甲酸酯,4-羧基邻苯二甲酸酯-乙酯,四氯邻苯二甲酸酯; Y = BPh4,PF6; triphos = MeC(CH2PPh2)3)。所有这些化合物都经历电子转移反应,其中包括金属的M(III),M(II)和M(I)氧化态,以及醌型配体的儿茶酸,半醌和醌氧化水平。顺磁性的Ir(III)半奎宁酸盐络合物[(triphos)Ir(SQ)] 2+和Ir(II)儿茶酚酸盐[(triphos)Ir(Cat)]已通过X波段ESR光谱进行了表征。已经研究了非水介质中儿茶酚酸金属与双氧的反应。除极少数例外外,所有化合物均与O2反应生成通式[(triphos)M(OO)(SQ)]
    DOI:
    10.1016/s0020-1693(00)92345-4
  • 作为产物:
    描述:
    [(1,1,1-tris(diphenylphosphinomethyl)ethane)Ir(C2H4)(H)2]BPh4乙烯 以 neat (no solvent) 为溶剂, 以8%的产率得到
    参考文献:
    名称:
    三足(聚膦)金属配合物的分子固态有机金属化学。乙烯在铱催化加氢
    摘要:
    [(triphos)Ir(H) 2 (C 2 H 4 )]BPh 4 (1) 与 CO、C 2 H 4 和 H 2 的固-气反应描述为 [triphos=MeC(CH 2 PPh 2 ) 3]。气态反应物促进从 1 中消除乙烷并形成 [(triphos)Ir(CO) 2 ]BPh 4 、[(triphos)Ir(C 2 H 4 ) 2 )BPh 4 和 [(triphos)Ir( H) 2 ]BPh 4 ,分别。后一种 16 电子物种在低于 70 o C 的温度下以固态分离
    DOI:
    10.1021/ja00058a021
点击查看最新优质反应信息

文献信息

  • Barbara, Pierluigi; Bianchini, Claudio; Meli, Andrea, Organometallics, 1991, vol. 10, # 7, p. 2227 - 2238
    作者:Barbara, Pierluigi、Bianchini, Claudio、Meli, Andrea、Peruzzini, Maurizio、Vacca, Alberto、Vizza, Francesco
    DOI:——
    日期:——
  • Mechanistic Study of Ir(H)2-Assisted Transformations of Ethyne: Cyclotrimerization, Cooligomerization with Ethene, and Reductive Coupling
    作者:Claudio Bianchini、Kenneth G. Caulton、Todd J. Johnson、Andrea Meli、Maurizio Peruzzini、Francesco Vizza
    DOI:10.1021/om00002a046
    日期:1995.2
    The (ethene)dihydride complex [(triphos)Ir(H)(2)(C2H4)]BPh(4) (1) is capable of promoting a variety of transformations of ethyne, including cyclotrimerization to benzene, cooligomerization with ethene to hexa-1,3,5-triene, reductive coupling to buta-1,3-diene, and hydrogenation to ethene (triphos = MeC(CH(2)PPh(2))(3)). A detailed study under various experimental conditions, the detection of several intermediates along the various reaction paths, and the use of isolated complexes in independent reactions, taken together, permit mechanistic conclusions that account for the varied products. In particular, the cyclotrimerization and cooligomerization reactions are mediated by an iridacyclopentadiene species which is trapped by either ethyne or ethene. Consumption of the hydride ligands of 1 by C2H2 or C2H4 is an ingredient for both cyclotrimerization and cooligomerization reactions but is not. necessary to accomplish the reductive dimerization of ethyne to buta-1,3-diene for which, conversely, the two hydride ligands are mandatory.
  • Molecular Solid-Gas Organometallic Chemistry. Catalytic and Stoichiometric Iridium-Assisted C-C Bond-Forming Reactions Involving Ethyne and Ethene
    作者:Claudio Bianchini、Mauro Graziani、Jan Kaspar、Andrea Meli、Francesco Vizza
    DOI:10.1021/om00016a020
    日期:1994.4
    Treatment of crystals of the (eta2-ethene)dihydride complex [(triphos)Ir(H)2(C2H4)]BPh4 (1; triphos = MeC(CH2PPh2)3) with ethyne (4 atm) at 70-degrees-C for 3 h results in evolution of ethene and but-2-ene and formation of five different organometallic products, namely the eta4-benzene complex [(triphos)Ir(eta4-C6H6)]BPh4 (2), the eta4-buta-1,3-diene complex [(triphos)Ir(eta4-C4H6)]BPh4 (3), the eta4-cyclohexa-1,3-diene complex [(triphos)Ir(eta4-C6H8)]BPh4 (4), and the crotyl hydride isomers [(triphos)Ir(H) (eta3-MeC3H4)]BPh4 (5-anti and 5-syn) in a kinetic product ratio of 35:5:23:28:9. At 100-degrees-C, the solid-gas reaction produces catalytic amounts of benzene, the catalyst precursor being the eta4-benzene complex 2. Temperature-programmed reactions carried out in a flow reactor and the use of isolated complexes in independent solid-gas reactions permit mechanistic conclusions which account for the varied organic and organometallic products. The ethene ligand in 1 is an essential ingredient for both cyclotrimerization and cooligomerization reactions of ethyne, which are traversed by eta3-crotyl complexes. Conversely, the ethene ligand is a competitive inhibitor for the reductive dimerization of ethyne to buta-1,3-diene, for which the two hydride ligands are mandatory. Comparison with fluid solution-phase systems provides evidence for the control exerted by the constraining environment of the crystal lattice on the solid-gas reactions.
  • The Mechanism of Acetylene Cyclotrimerization Catalyzed by the fac-IrP3+ Fragment: The Relationship between Fluxionality and Catalysis
    作者:Claudio Bianchini、Kenneth G. Caulton、Catherine Chardon、Marie-Liesse Doublet、Odile Eisenstein、Sarah A. Jackson、Todd J. Johnson、Andrea Meli、Maurizio Peruzzini
    DOI:10.1021/om00017a067
    日期:1994.5
    Reaction of [(triphos)Ir(C2H4)2](BPh4) with C2H2 at 25-degrees-C gives [(triphos)Ir(eta4-C6H6)](BPh4), 1, which was shown to have this Ir/benzene connectivity by single crystal X-ray diffraction. Crystal data (-155-degrees-C): a = 16.471(6) angstrom, b = 17.126(6) angstrom, c = 12.030(4) angstrom, alpha = 101.22(2)-degrees, beta = 93.61(2)-degrees, and gamma = 75.46(1)-degrees with Z = 2 in space group Pi. This species reacts with C2H2 in the presence of Cl- to give (triphos)IrCl(eta2-C4H4), 2, which can be converted back to 1 with C2H2 in the presence of the chloride scavenger TlPF6. Ethyne will displace C6H6 from 1 at 60-degrees-C in THF, thus completing a catalytic cyclotrimerization of C2H2 to benzene. While the phosphorus nuclei in 1 form an AM2 spin system, these undergo site exchange with activation parameters DELTAH = 10.7(3) kcal/mol and DELTAS = -9.5(6) kcal-1 mol-1. The benzene ring H-1 NMR spectra are also temperature-dependent, and the fluxionality can be accounted for by the same activation parameters appropriate to P-31 site exchange; the same physical mechanism thus accomplishes both site exchanges. The structural study indicates that eta4-C6H6, which is nonplanar, is a stronger pi-acceptor than is butadiene itself. A multistep mechanism has been studied with extended Huckel calculations. It is shown that the C-C bond formation between the first two alkynes to give the unsaturated metallacyclopentadiene is permitted when the three spectator ligands are in a fac geometry but is forbidden when they are in a mer geometry, which explains the puzzling difference of reactivity between monodentate triphosphine and tripodal complexes. It is shown that this unsaturated metallacycle is highly reactive toward an incoming ligand since it is not strongly stabilized by conjugation within the pi system. This explains why it can be isolated by trapping with a Lewis base. The addition of the third alkyne to the metallacyclopentadiene, leading to the eta4-benzene complex, can be achieved in a concerted manner and leads directly to the product. The C-C bond lengths within the eta4-benzene are shown to be due to the presence of a potent metal donor and to the nonplanarity of the benzene ring. The fluxionality of the eta4-benzene, which makes all carbons of the ring and the three phosphine ligands equivalent on the NMR time scale, is suggested to be due to an easy displacement/rotation of the IrP3+ fragment around the ring. This displacement avoids eta6-coordination (20-electron species) but passes through unsaturated eta3- and eta2-benzene coordination modes. These unsaturated species (notably the eta2 one) have the proper low-lying LUMO to coordinate an additional alkyne. This leads back to the monoalkyne complex and benzene production. Fluxionality and reactivity of the eta4-benzene ring are therefore interrelated. The efficiency of the catalysis is suggested to be due to the fact that all intermediates are reactive 16-electron species stabilized by additional donation from the conjugated pi system of the organic ligand. The presence of an enforced fac arrangement of the three spectator ligands avoids the thermodynamic trap of the trigonal bipyramidal bis(alkyne) complex.
查看更多