摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Erbium--manganese (1/2) | 12020-20-1

中文名称
——
中文别名
——
英文名称
Erbium--manganese (1/2)
英文别名
erbium;manganese
Erbium--manganese (1/2)化学式
CAS
12020-20-1
化学式
ErMn2
mdl
——
分子量
277.136
InChiKey
PPMYOUUADHHWMP-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.01
  • 重原子数:
    3
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

反应信息

  • 作为反应物:
    描述:
    Erbium--manganese (1/2) 以 neat (no solvent) 为溶剂, 生成
    参考文献:
    名称:
    Makarova, O. L.; Goncharenko, I. N.; Bouree, F., Physical Review B: Condensed Matter and Materials Physics, p. 1 - 5
    摘要:
    DOI:
  • 作为产物:
    描述:
    氢化铒 、 manganese 以 melt 为溶剂, 生成 Erbium--manganese (1/2)
    参考文献:
    名称:
    Phase relationships in the Er–Fe–Mn ternary system at 773K
    摘要:
    In order to determine the existence of phases and relationships in the Er-Fe-Mn system at 773 K, we have carried out this work mainly by X-ray powder diffraction with the aid of differential thermal analysis and have obtained the conclusions below. The existence of seven binary compounds ErFe2, ErFe3, Er6Fe23, Er2Fe17, ErMn12, Er6Mn23, ErMn23 and one intermediate solid solution gamma(Fe center dot Mn) have been confirmed in this system. Er6Fe23 and Er6Mn23 form continuous solid solution Er-6 (Fe23-X Mn-X) (0 <= X <= 23). At 773 K, the maximum solid solubility of Fe in alpha Mn, ErMn12, ErMn2 phases and Mn in ErFe2, Er2Fe17, alpha Fe phases are about 31, 69, 13 at% Fe and 47, 28, 8 at% Mn, respectively. The homogeneity range of gamma(Fe center dot Mn) phase extended from about 34 at% Mn to 52 at% Mn. The maximum solid solubility of Er in gamma(Fe center dot Mn) phase is about 2 at% Er. The isothermal section consists often single-phase regions, sixteen two-phase regions and seven three-phase regions. No ternary compounds were observed at 773 K in this system. (C) 2008 Elsevier B.V. All rights reserved
    DOI:
    10.1016/j.jallcom.2008.06.108
点击查看最新优质反应信息

文献信息

  • Large reversible magnetocaloric effect in RMn2 (R=Tb, Dy, Ho, Er) compounds
    作者:Wenliang Zuo、Fengxia Hu、Jirong Sun、Baogen Shen
    DOI:10.1016/j.jallcom.2013.03.185
    日期:2013.10
    investigated. TbMn2 and DyMn2 crystallize in cubic Laves phase structure (C15 type), whereas HoMn2 and ErMn2 crystallize in hexagonal Laves phase structure (C14 type). For TbMn2 compound, the field-induced metamagnetic transition accompanying a spontaneous cell volume expansion is observed (inverse MCE), which leads to a large positive value (8.3 J kg � 1 K � 1 ) of magnetic entropy change around 36
    研究了 RMn2 (R = Tb、Dy、Ho、Er) 化合物的磁热效应 (MCE)。TbMn2 和 DyMn2 以立方 Laves 相结构(C15 型)结晶,而 HoMn2 和 ErMn2 以六方 Laves 相结构(C14 型)结晶。对于 TbMn2 化合物,观察到伴随自发细胞体积膨胀的场诱导变磁转变(逆 MCE),这导致在场下 36 K 附近磁熵变化的大正值(8.3 J kg 1 K 1 ) 0-1 T 的变化,而其他 RMn2 (R = Dy, Ho, Er) 化合物的磁熵变 (DSM) 和制冷剂容量 (RC) 的最大值为 15.7, 18.4, 25.5 J kg 1 K 1 和 403.6、404.3、316.0 J kg 1 在它们的 TC 周围,对于 0-5 T 的场变化,热和磁滞损耗分别可以忽略不计。
  • Magnetic Characteristics of Laves Phase RMn<sub>2</sub> Compounds (R=Gd, Tb, Dy, Ho and Er)
    作者:Yoshikazu Makihara、Yoshikazu Andoh、Yuzo Hashimoto、Hironobu Fujii、Masahiro Hasuo、Tetsuhiko Okamoto
    DOI:10.1143/jpsj.52.629
    日期:1983.2
  • Crystal structures and hydrogenation–dehydrogenation characteristics of Er(Ni1−xMnx)2
    作者:Q.A. Zhang、Z.Q. Dong、S.C. Xie
    DOI:10.1016/j.jallcom.2014.11.157
    日期:2015.3
    The crystal structures and hydrogenation-dehydrogenation characteristics of Er(Ni1-xMnx)(2) compounds are investigated in this work. It is found that either annealing or hydrogenation leads to ordering transition of ErNi2 from MgCu2-type structure to TmNi2-type superstructure. As Mn content is within x = 0.2-0.8 and 0.9-1, Er(Ni1-xMnx)(2) compounds have C15 and C14 structures, respectively. The hydrogen absorption content of the C15-type Er(Ni1-xMnx)(2) increases with raising Mn content x, however, the absorption plateau pressure decreases gradually and hydrogen desorption becomes difficult. ErMn2 can absorb hydrogen to form irreversible ErMn2H3.4 and reversible ErMn2H4.8 at 3.5 x 10(-5) and 1.5 x 10(-1) MPa, respectively. Nevertheless, the C14-type Er(Ni0.1Mn0.9)(2) compound is subjected to decomposition into ErMn(2)Hz and ErNi2Hy during hydrogen absorption. (C) 2014 Elsevier B.V. All rights reserved.
  • NMR Study of Magnetic State of RMn<sub>2</sub>Intermetallic Compounds. II. R=Heavy Rare-Earth
    作者:Kazuyoshi Yoshimura、Masayuki Shiga、Yoji Nakamura
    DOI:10.1143/jpsj.55.3585
    日期:1986.10.15
  • XMCD at the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>L</mml:mi><mml:mrow><mml:mtext>II</mml:mtext><mml:mo>,</mml:mo><mml:mtext>III</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math>edges of Er in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>ErMn</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>ErFe</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>ErCo</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>ErNi</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>ErAl</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>Laves phases and in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Er</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mtext>SO</mml:mtext></mml:mrow><mml:mn>4</mml:mn></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mn>3</mml:mn></mml:msub><mml:mo>,</mml:mo></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mn>8</mml:mn><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mn>0</mml:mn></mml:mrow></mml:math>
    作者:Christine Giorgetti、Elisabeth Dartyge、François Baudelet、Rose-Marie Galéra
    DOI:10.1103/physrevb.70.035105
    日期:——
    X-ray magnetic circular dichroism (XMCD) measurements have been performed at the L-II,L-III edges of Er in the intermetallic compounds ErMn2, ErFe2, ErCo2, ErNi2, and ErAl2, as well as in the ionic compound Er-2(SO4)(3),8H(2)0, in order to study the evolution of the XMCD spectra as a function of the 5d states filling and/or their hybridization with magnetic or nonmagnetic electronic states. Almost all the spectra present the same general features, confirming that the 4f-5d intra-atomic coupling is a key point to explain XMCD spectra. Thus, we analyze the models based on this interaction, proposed to account for the unexpected sign of E1-XMCD measurements, as well as the nonstatistical branching ratio between XMCD at the L-II and L-III edges. We underline the impossibilities of reproducing our measurements using these models. Moreover, we point out the special role played by Fe which leads, at the L-II edge of Er, to a significant modification of the shape of XMCD spectrum and an unexpected temperature dependence. The XMCD revealed an unexpected behavior of the 5d magnetic polarization in these compounds which is not visible in macroscopic measurements. This also demonstrates the non-negligible role played by the 5d-3d hybridization.
查看更多