摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

potassium oxapentadienide | 131104-72-8

中文名称
——
中文别名
——
英文名称
potassium oxapentadienide
英文别名
——
potassium oxapentadienide化学式
CAS
131104-72-8
化学式
C4H5O*K
mdl
——
分子量
108.181
InChiKey
VXRYYMGKEUGACT-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

SDS

SDS:8402be8e698c062e1a018fc6a621bee8
查看

反应信息

  • 作为反应物:
    描述:
    [Rh(μ-Cl)(PMe3)2]2 、 potassium oxapentadienide四氢呋喃 为溶剂, 以68%的产率得到((1-3-η)-5-oxapentadienyl)bis(trimethylphosphine)rhodium
    参考文献:
    名称:
    氧杂戊二烯基-铑-膦化学1
    摘要:
    用氧杂戊二烯化钾处理[(PR 3)2 Rh(μ-Cl)] 2(R = Me或Et)导致产生((1-3-n)-5-氧杂戊二烯基)Rh(PR 3)2(1,R = Me; 2,R = Et)为反式和顺式异构体的平衡混合物。同样,用2,4-二甲基恶戊二烯酸钾处理[(PR 3)2 Rh(μ-Cl)] 2(R = Me,Et)会生成((1-3-n)-2,4-二甲基-5-氧杂戊二烯基)Rh(PR 3)2(3,R = Me;4,R = Et)。化合物3和4主要以反异构体的形式存在,但冷却后表现出两种旋转异构形式,镰刀形和U形旋转异构体。用另外1当量的PMe 3处理1会产生18e种((1-3-n)-5-氧杂戊二烯基)Rh(PMe 3)3(5),在室温下稳定。相反,当用另外的1当量的PEt 3处理2时,在室温下无法通过NMR检测到反应。然而,在冷却至-70℃时,通过NMR观察到膦加合物((1-3-n)-5-氧杂戊二烯基)Rh(PEt
    DOI:
    10.1021/om020429u
点击查看最新优质反应信息

文献信息

  • Bleeke, John R.; Haile, Tesfamichael; Chiang, Michael Y., Organometallics, 1991, vol. 10, # 1, p. 19 - 21
    作者:Bleeke, John R.、Haile, Tesfamichael、Chiang, Michael Y.
    DOI:——
    日期:——
  • Bleeke, John R.; Haile, Tesfamichael; New, Pamela R., Organometallics, 1993, vol. 12, # 2, p. 517 - 528
    作者:Bleeke, John R.、Haile, Tesfamichael、New, Pamela R.、Chiang, Michael Y.
    DOI:——
    日期:——
  • Synthesis, Structure, Spectroscopy, and Reactivity of Oxapentadienyl−Cobalt−Phosphine Complexes<sup>,</sup>
    作者:John R. Bleeke、Bryn L. Lutes、Michael Lipschutz、Donastas Sakellariou-Thompson、John Seonghyun Lee、Nigam P. Rath
    DOI:10.1021/om100361a
    日期:2010.11.8
    The first examples of oxapentadienyl-cobalt complexes have been synthesized and structurally characterized. Treatment of (Cl)Co(PMe3)(3) with potassium oxapentadienide produces ((1,2,3-eta)-5-oxapentadienyl)Co(PMe3)(3) (1), while the reaction of (Cl)Co(PMe3)(3) with potassium 2,4-dimethyloxapentadienide generates ((1,2,3-eta)-2,4-dimethyl-5-oxapentadienyl)Co(PMe3)(3) (2). Both 1 and 2 undergo ligand substitution reactions when treated with excess carbon monoxide. Compound 1 reacts with 1 equiv of CO to produce ((1,2,3-eta)-5-oxapentadienyl)Co(PMe3)(2)(CO) (3), while 2 undergoes a double CO substitution to generate ((1,2,3-eta)-2,4-dimethyl-5-oxapentadienyl)Co(PMe3)(CO)(2) (4). Compound 3 can also be synthesized by reacting (Cl)Co(PMe3)(2)(CO)(2) with potassium oxapentadienide, but the analogous reaction involving potassium 2,4-dimethyloxapentadienide results in reduction of the cobalt starting material and production of the Co(0) dimer (CO)(PMe3)(2)Co(PMe)(2)Co(PMe3)(2)(Co) (5). Treatment of 1 with triflic acid (HO3SCF3) or methyl triflate (MeO3SCF3) results in electrophilic attack at oxygen and production of (eta(4)-butadienol)Co(PMe3)(3)+O3SCF3- (6) or (eta(4)-butadienyl methyl ether)Co(PMe3)3+O3SCF3- (7). Treatment of 2 with triflic acid or methyl triflate also results in electrophilic attack at oxygen; however, these products are unstable and rapidly lose their protonated or methylated ligands. The resulting Co(PMe3)4+O3SCF3-, generated in situ, reacts with excess carbon monoxide to produce Co(PMe3)(3)(CO)(2)+O3SCF3- (8). Compounds 1-8 have been characterized by single-crystal X-ray diffraction.
查看更多