摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

[Mn(2,2'-bipyridine)(CO)3]- | 156189-62-7

中文名称
——
中文别名
——
英文名称
[Mn(2,2'-bipyridine)(CO)3]-
英文别名
[(2,2′-bipyridine)Mn(CO)3]-;[Mn(2,2'-bipyridine)(CO)3];[Mn(CO)3(2,2’-bipyridine)]-;[Mn(2,2'-bipyridine)(CO)3]-;[Mn(bpy)(CO)3];[Mn(CO)3(bipy)]-;[Mn(2,2′-bipyridine)(CO)3](1-)
[Mn(2,2'-bipyridine)(CO)3]-化学式
CAS
156189-62-7
化学式
C13H8MnN2O3
mdl
——
分子量
295.156
InChiKey
RMIDENKFUBAMOH-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为产物:
    描述:
    参考文献:
    名称:
    [Mn(联吡啶基)(CO)3Br]:丰富的金属羰基配合物,可作为高效的CO2还原电催化剂
    摘要:
    工作中的锰:事实证明,基于锰的羰基联吡啶基络合物是一种贵重,廉价的非贵金属,是在温和条件下将CO 2选择性电化学还原为CO的出色分子催化剂。锰配合物优于rh配合物的另一个优点是这些催化剂的过电势明显更低(0.40 V增益)。
    DOI:
    10.1002/anie.201103616
点击查看最新优质反应信息

文献信息

  • Selective Catalytic Electroreduction of CO<sub>2</sub> at Silicon Nanowires (SiNWs) Photocathodes Using Non-Noble Metal-Based Manganese Carbonyl Bipyridyl Molecular Catalysts in Solution and Grafted onto SiNWs
    作者:Encarnación Torralba-Peñalver、Yun Luo、Jean-Daniel Compain、Sylvie Chardon-Noblat、Bruno Fabre
    DOI:10.1021/acscatal.5b01546
    日期:2015.10.2
    The electrocatalytic reduction of CO2 to CO in hydroorganic medium has been investigated at illuminated (lambda > 600 nm; 20 mW cm(-2)) hydrogen-terminated silicon nanowires (SiNWs-H) photocathodes using three Mn-based carbonyl bipyridyl complexes as homogeneous molecular catalysts ([Mn(L) (CO)(3)(CH3CN)](PF6) and [Mn(bpy) (CO)(3)Br) with L = bpy = 2,2'-bipyridine and dmbpy = 4,4'-dimethyl-2,2'-bipyridine). Systematic comparison of their cyclic voltammetry characteristics with those obtained at flat hydrogen-terminated silicon and traditional glassy carbon electrodes (GCE) enabled us to demonstrate the superior catalytic efficiency of SiNWs-H in terms of cathodic photocurrent densities and overpotentials. For example, the photocurrent densities measured at -1.0 V vs SCE for [Mn(bpy) (CO)(3)(CH3CN)](PF6) at SiNWs-H exceeded 1.0 mA cm(-2) in CO2-saturated CH3CN + 5% v/v H2O, whereas almost zero current was measured at this potential at GCE. Such characteristics have been supported by the energetic diagrams built for the different SiNWs vertical bar Mn-based catalyst interfaces. The fill factor FF and energy conversion efficiency eta calculated under catalytic conditions were higher for [Mn(bpy or dmbpy) (CO)(3)(CH3CN)](PF6) (FF = 0.35 and 0.34; eta = 3.0 and 2.0%, respectively). Further preparative-scale electrolysis at SiNWs-H photocathode with Mn-based complex catalysts in electrolytic solution evidenced the quantitative conversion of CO2 to CO with a higher stability of the [Mn(dmbpy) (CO)(3)(CH3CN)](PF6) complex. Finally, in order to develop technologically viable electrocatalytic devices, the elaboration of SiNWs-H photoelectrodes modified with a Mn-based complex has been successfully achieved from an electropolymerizable catalyst, and it was shown that the electrocatalytic activity of the complex was retained after immobilization.
查看更多