摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

[Fe(S(Me2)N4(tren))(OOH)][PF6] | 475165-46-9

中文名称
——
中文别名
——
英文名称
[Fe(S(Me2)N4(tren))(OOH)][PF6]
英文别名
——
[Fe(S(Me2)N4(tren))(OOH)][PF6]化学式
CAS
475165-46-9
化学式
C11H26FeN4O2S*F6P
mdl
——
分子量
479.23
InChiKey
PQPUHIGXDFPJTN-DYVFDRNCSA-L
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为产物:
    描述:
    potassium superoxide 、 、 在 18-crown-6 作用下, 以 丙酮 为溶剂, 生成 [Fe(S(Me2)N4(tren))(OOH)][PF6]
    参考文献:
    名称:
    半胱氨酸连接的非血红素铁酶超氧化物还原酶的合成模型:通过 FeIII-OOH 中间体的 XAS 观察和结构表征
    摘要:
    超氧化物还原酶 (SOR) 属于一类新的金属酶,可通过将超氧化物还原为过氧化氢来降解超氧化物。这些酶包含一个催化铁位点,在催化过程中在 Fe(II) 和 Fe(III) 状态之间循环。已建议还原超氧化物的关键步骤是将 HO(2) 与 Fe(II) 结合,然后进行内球电子转移以提供 Fe(III)-OO(H) 中间体。在本文中,超氧化物诱导合成亚铁 SOR 模型 ([Fe(II)(S(Me2)N(4)(tren))](+) (1)) 提供 [Fe( III)(S(Me2)N(4)(tren)(solv))](2+) (2-solv) 被报道。XANES 光谱显示 1 在甲醇溶液中保持五配位。在-90 摄氏度的 MeOH 中,1 与 KO(2) 反应,形成中间体 (3),其特征是 LMCT 带中心位于 452(2780) nm,和低自旋状态(S = 1/2),基于其轴向 EPR 谱(g(垂直)=
    DOI:
    10.1021/ja012722b
点击查看最新优质反应信息

文献信息

  • Investigation of the Mechanism of Formation of a Thiolate-Ligated Fe(III)-OOH
    作者:Elaine Nam、Pauline E. Alokolaro、Rodney D. Swartz、Morgan C. Gleaves、Jessica Pikul、Julie A. Kovacs
    DOI:10.1021/ic101776m
    日期:2011.3.7
    Kinetic studies aimed at determining the most probable mechanism for the proton-dependent [Fe-II((SN4)-N-Me2(tren))](+) (1) promoted reduction of superoxide via a thiolate-ligated hydroperoxo intermediate [Fe-III((SN4)-N-Me2(tren))(OOH)](+) (2) are described. Rate laws are derived for three proposed mechanisms, and it is shown that they should conceivably be distinguishable by kinetics. For weak proton donors with pK(a(HA)) > pK(a(HO2)) rates are shown to correlate with proton donor pK(a), and display first-order dependence on iron, and half-order dependence on superoxide and proton donor HA. Proton donors acidic enough to convert O-2(-) to HO2 (in tetrahydrofuran, THF), that is, those with pK(a(HA)) < pK(a(HO2)), are shown to display first-order dependence on both superoxide and iron, and rates which are independent of proton donor concentration. Relative pK(a) values were determined in THF by measuring equilibrium ion pair acidity constants using established methods. Rates of hydroperoxo 2 formation displays no apparent deuterium isotope effect, and bases, such as methoxide, are shown to inhibit the formation of 2. Rate constants for p-substituted phenols are shown to correlate linearly with the Hammett substituent constants sigma(-). Activation parameters (Delta H double dagger = 2.8 kcal/mol, Delta S double dagger = -31 eu) are shown to be consistent with a low-barrier associative mechanism that does not involve extensive bond cleavage. Together, these data are shown to be most consistent with a mechanism involving the addition of HO2 to 1 with concomitant oxidation of the metal ion, and reduction of superoxide (an "oxidative addition" of sorts), in the rate-determining step. Activation parameters for MeOH- (Delta H double dagger = 13.2 kcal/mol and Delta S double dagger = -24.3 eu), and acetic acid- (Delta H double dagger = 8.3 kcal/mol and Delta S double dagger = -34 eu) promoted release of H2O2 to afford solvent-bound [Fe-III((SN4)-N-Me2(tren))(OMe)](+) (3) and [Fe-III((SN4)-N-Me2(tren))(O(H)Me)](+) (4), respectively, are shown to be more consistent with a reaction involving rate-limiting protonation of an Fe(III)-OOH, than with one involving rate-limiting O-O bond cleavage. The observed deuterium isotope effect (k(H)/k(D) = 3.1) is also consistent with this mechanism.
查看更多