摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

BH3 * 2,4,6-trimethylpyridine | 4460-71-3

中文名称
——
中文别名
——
英文名称
BH3 * 2,4,6-trimethylpyridine
英文别名
2.4.6-(CH3)3C5H2N*BH3;2,4,6-Collidin-boran
BH3 * 2,4,6-trimethylpyridine化学式
CAS
4460-71-3
化学式
C8H14BN
mdl
——
分子量
135.017
InChiKey
LJIGUAYJAZQOKO-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    1,3-diphenyl-2-propyn-1-one 2,4,6-triisopropylbenzenesulfonhydrazoneBH3 * 2,4,6-trimethylpyridine 在 dirhodium(II) tetrakis[N-tetrafluorophthaloyl-(S)-tert-leucinate] 、 sodium hydride 作用下, 以 乙醚 为溶剂, 反应 21.0h, 生成 C23H24BN 、 C23H24BN
    参考文献:
    名称:
    B-H键插入反应催化不对称合成手性炔丙基硼化合物
    摘要:
    手性炔丙基硼化合物具有多种潜在应用。尽管用于合成其他有机硼化合物的高度对映选择性方法的数量已经确立,但手性炔丙基硼化合物的高度对映选择性合成仍然未知。在此,我们报道了一种利用芳基炔丙基磺酰腙作为卡宾前体的高对映选择性二铑催化 B-H 键插入反应构建手性炔丙基硼化合物的催化方法。该方法可以直接合成多种稳定的手性炔丙基硼化合物,产率高达 99%,对映选择性高达 97% ee。该方法操作简单,底物范围广,官能团耐受性好,反应条件温和。本研究中制备的硼化合物是其他已知方法无法获得的,并且具有很高的潜在效用,因为它们可以有效地转化为具有良好对映体保真度的丙二烯基硼酸酯、三唑硼烷化合物以及高炔丙醇和炔丙醇。我们的工作扩展了催化B-H键插入反应的库,增加了可合成的手性有机硼化合物的种类,并提供了手性炔丙基硼化合物可能转化的初步信息,从而为这些化合物的广泛应用奠定了基础。以及具有良好对映体保真度的高炔丙醇
    DOI:
    10.1021/acscatal.2c02956
  • 作为产物:
    参考文献:
    名称:
    Metal Tetrahydridoborates and Tetrahydridoborato Metalates. 23.1 Amine Solvates of Lithium and Sodium Tetrahydridoborate
    摘要:
    A series of amine solvates of LiBH4 and NaBH4 have been prepared and characterized by LR and NMR spectroscopy as well as by X-ray single-crystal structure determinations; LiBH4 crystallizes from pyridine as LiBH4. 3(py), 1, in which the BH4 anion acts as a bidentate ligand. However, in the structure of LiBH4. 3py*, 2 (py* = p-benzylpyridine), a tridentate BH4 group is observed. In contrast, LiBH4. 2(coll), 3 (coll = 2,4,6-trimethylpyridine, collidine), possesses only a bidentate tetrahydridoborate group, while a tridentate BH4 group is present in monomeric LiBH4. PMDTA, 4 (PMDTA = pentamethyldiethylenetriamine). In contrast, NaBH4. PMDTA, 6, is dimeric in the solid state: three of the four H atoms of each BH4 group coordinate to the Na atoms; two form a double bridge to two Na atoms while the third one is bonded only to one Na center. LiBH4. TMTA, 5 (TMTA = trimethylhexahydrotriazine), is also dimeric; however, only two of the nitrogen atoms of the TMTA ligand coordinate to Li. The BH4 groups bridge the two Li centers each with one H atom coordinating to two Li atoms, and two bind to a single Li atom. A totally different situation exists for NaBH4. TMTCN, 7 (TMTCN = trimethyltriazacyclononane), which is tetrameric in the crystal. Only: one hydrogen atom of the BH4 group functions as a hydride bridge and binds to three Na centers. The molecule contains a Na4B4 heterocubane core. Thus, the different modes of the interaction of the BH4 groups with the alkali metal atoms are determined by the number of donor atoms from the neutral amine ligand and the size of the cation. No definitive conclusion as to the structure of the amine solvates can be derived from IR and/or B-11 NMR spectra for the solution state. The crystallographic data are as follows. 1: a 10.9939(5) Angstrom, b = 9.9171(4) Angstrom, c = 14.8260(8) Angstrom, beta = 94.721(3)degrees, V = 1611.0(1) Angstrom(3), monoclinic, space group P2(1)/n, Z = 4, R-1 = 0.0823. 2: a 10.121(1) Angstrom, b = 12.417(2) Angstrom, c = 13.462(3) Angstrom, alpha = 83.189(2)degrees, beta = 86.068(3)degrees gamma = 69.166(4)degrees, V = 1369.3(5) Angstrom(3), triclinic, space group P (1) over bar, Z = 2, R-1 = 0.0689. 3: a = 28.527(3) Angstrom, b = 10.858(1) Angstrom, c = 11.319(1) Angstrom, V = 3505.7(6) Angstrom(3), orthorhombic, space group Fdd2, Z = 8, R-1 = 0.0502. 4: a = 7.591(3) Angstrom, b = 15.325(6) Angstrom, c = 8.719(4) Angstrom, beta = 99.80(2)degrees, V = 999.5(7) Angstrom(3), monoclinic, space group P2(1)/c, Z = 4, R-1 = 0.0416. 5: a 14.68(1) Angstrom, b = 11.830(7) Angstrom, c = 16.960(8) Angstrom, V= 2946(3) Angstrom, orthorhombic, space group P2(1)2(1)2(1), Z = 8, R-1 = 0.0855. 6: a = 9.993(2) Angstrom, b = 10.008(3) Angstrom, c = 14.472(4) Angstrom, beta = 93.55(2)degrees, V = 1444.6(7) Angstrom(3), monoclinic, space group P2(1)/n, Z = 4, R-1 = 0.0455. 7: cubic, a = b = c = 13.859(5) Angstrom, V = 2662(2) Angstrom(3), cubic, space group I(4) over bar 3 m, Z = 8, R-1 = 0.0871.
    DOI:
    10.1021/ic990205c
点击查看最新优质反应信息

文献信息

  • One-Pot Synthesis of Ammonia–Borane and Trialkylamine–Boranes from Trimethyl Borate
    作者:P. Veeraraghavan Ramachandran、Bhimapaka C. Raju、Pravin D. Gagare
    DOI:10.1021/ol302421t
    日期:2012.12.21
    A one-pot procedure for the preparation of ammonia borane from trimethyl borate in 90% yield and >99% purity has been reported. This methodology has been modified to prepare a series of trialkylamine–boranes in 70–82% yields from trimethyl borate and lithium hydride/aluminum chloride in the presence of the corresponding trialkylamine.
    已经报道了一锅法从硼酸三甲酯制备甲硼烷的方法,产率为90%,纯度> 99%。对该方法进行了修改,以在相应的三烷基胺存在下,由硼酸三甲酯和氢化/化铝制备70-82%收率的三烷基胺-硼烷系列。
  • Boron-11 chemical shifts in the determination of donor-acceptor strengths—VII
    作者:E.F. Mooney、M.A. Qaseem
    DOI:10.1016/0022-1902(68)80283-0
    日期:1968.7
    The 1H and 11B spectra of a series of pyridine- and substituted pyridine-borane and phenylborane (Py, BH3 and Py, PhBH2) complexes have been measured. The 14N chemical shifts of pyridine, 2-, 3- and 4-methyl and 4-ethyl-pyridines and the borane complexes and the hydrochlorides have also been determined.
    已测量了一系列吡啶和取代的吡啶硼烷和苯基硼烷(Py,BH 3和Py,PhBH 2)配合物的1 H和11 B光谱。还确定了吡啶,2-,3-和4-甲基和4-乙基吡啶硼烷络合物和盐酸盐的14 N化学位移。
  • Amine Boranes. III. Propanolysis of Pyridine Boranes
    作者:G. E. Ryschkewitsch、E. R. Birnbaum
    DOI:10.1021/ic50026a029
    日期:1965.4
  • Gmelin Handbuch der Anorganischen Chemie, Gmelin Handbook: B: B-Verb.14, 3.11.2, page 124 - 131
    作者:
    DOI:——
    日期:——
  • Nainan; Ryschkewitsch, Inorganic Chemistry, 1969, vol. 8, # 12, p. 2671 - 2674
    作者:Nainan、Ryschkewitsch
    DOI:——
    日期:——
查看更多