摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(3,5-di-tert-butylphenyl zinc porphyrin)-(ferrocene) | 868654-34-6

中文名称
——
中文别名
——
英文名称
(3,5-di-tert-butylphenyl zinc porphyrin)-(ferrocene)
英文别名
BPZnP-Fc
(3,5-di-tert-butylphenyl zinc porphyrin)-(ferrocene)化学式
CAS
868654-34-6
化学式
C72H80FeN4Zn
mdl
——
分子量
1122.69
InChiKey
JLZKXZNDNHIFQT-VNPGQCQQSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为产物:
    描述:
    (3,5-di-tert-butylphenylporphyrin)-(ferrocene) 、 zinc(II) acetate dihydrate甲醇氯仿 为溶剂, 以56%的产率得到(3,5-di-tert-butylphenyl zinc porphyrin)-(ferrocene)
    参考文献:
    名称:
    Ultrafast Photoinduced Electron Transfer in Directly Linked Porphyrin−Ferrocene Dyads
    摘要:
    The ultrafast electron transfer occurring upon Soret excitation of three new porphyrin-ferrocene (XP-Fc) dyads has been studied by femtosecond up-conversion and pump-probe techniques. In the XP-Fc dyads (XP-Fcs) designed in this study, the ferrocene moiety is covalently bonded to the meso positions of 3,5-di-tert-butylphenyl zinc porphyrin (BPZnP-Fc), pentafluorophenyl zinc porphyrin (FPZnP-Fc), and 3,5-di-tert-butylphenyl free-base porphyrin (BPH2P-Fc). Charge separation and recombination in the XP-Fcs were confirmed by transient absorption spectra, and the lifetimes of the charge-separated states were estimated from the decay rate of the porphyrin radical anion band to be approximately 20 ps. The charge-separation rates of the XP-Fcs were found to be > 10(13) s(-1) from the S-2 state and 6.3 x 10(12) s(-1) from the S-1 state. Charge separation from the S-2 state was particularly efficient for BPZnP-Fc, whereas the main reaction pathway was from the S-1 state for BPH2P-Fc. Charge separation from the S-2 and S-1 states occurred at virtually the same rate in benzene and tetrahydrofuran and was much faster than their solvation times. Analysis of these results using semiquantum Marcus theory indicates that the magnitude of the electronic-tunneling matrix element is rather large and far outside the range of nonadiabatic approximation. The pump-probe data show the presence of vibrational coherence during the reactions, suggesting that wavepacket dynamics on the adiabatic potential energy surface might regulate the ultrafast reactions.
    DOI:
    10.1021/jp071546b
点击查看最新优质反应信息