摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 11089-95-5

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
11089-95-5
化学式
ArO
mdl
——
分子量
55.9474
InChiKey
DQTJVDABOMUOCD-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.12
  • 重原子数:
    2.0
  • 可旋转键数:
    0.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    19.9
  • 氢给体数:
    0.0
  • 氢受体数:
    0.0

反应信息

  • 作为产物:
    描述:
    氧气 作用下, 以 gas 为溶剂, 生成
    参考文献:
    名称:
    Absolute state‐selected and state‐to‐state total cross sections for the reaction Ar+(2P3/2,1/2)+O2
    摘要:
    Absolute spin–orbit state-selected total cross sections for the reactions, Ar+(2P3/2,1/2)+O2→O+2+Ar [reaction (1)], O++O+Ar [reaction (2)], and ArO++O [reaction (3)], have been measured in the center-of-mass collision energy (Ec.m.) range of 0.044–133.3 eV. Absolute spin–orbit state transition total cross sections for the Ar+(2P3/2,1/2)+O2 reaction at Ec.m.=2.2–177.6 eV have also been examined. The appearance energies for the formation of O+ (Ec.m.=2.9±0.2 eV) and ArO+ (2.2±0.2 eV) are in agreement with the thermochemical thresholds for reactions (2) and (3), respectively. The cross sections for O+2, O+, and ArO+ depend strongly on Ec.m. and the spin–orbit states of Ar+, suggesting that reactions (1)–(3) are governed predominantly by couplings between electronic potential energy surfaces arising from the interactions of Ar+(2P3/2)+O2, Ar+(2P1/2)+O2, and O+2+Ar. In the Ec.m. range of 6.7–22.2 eV, corresponding to the peak region of the O+ cross section curve, the cross sections for O+ are ≥50% of those for O+2. The production of O+ by reaction (2) is interpreted to be the result of predissociation of O+2 in excited states formed initially by reaction (1). The formation of charge transfer O+2(ã 4Πu) has been probed by the charge transfer reaction O+2(ã 4Πu)+Ar. The results indicate that in the Ec.m. range of 0.4–3.0 eV charge transfer product O+2 ions are formed mainly in the O+2(ã 4Πu) state. Experimental evidence is found supporting the conclusion that the vibrational distributions of O+2(ã 4Πu) formed in reaction (1) and by photoionization of O2 in the energy range between the O+2(ã 4Πu, v=0) and O+2(Ã 2Πu, v=0) thresholds are similar. The population of O+(4S) formed by reaction (2) has also been measured by the reaction O+(4S)+N2→NO++N. In the Ec.m. range of 3–44 eV, product O+ ions of reaction (2) are shown to be dominantly in the O+(4S) ground state. At Ec.m.≥14 eV, the retarding potential energy analysis for O+2 shows that more than 98% of the charge transfer O+2 ions are slow ions formed mostly by the long-range electron jump mechanism. Product ArO+ ions are observed only in the Ec.m. range of 2.2–26.6 eV. At Ec.m. slightly above the thermochemical thresholds of reactions (2) and (3), the overwhelming majority of ArO+ and O+ ions are scattered backward and forward with respect to the c.m. velocity of reactant Ar+, respectively. This observation is rationalized by a charge transfer predissociation mechanism which involves the formation of ArO+ and O+ via nearly collinear Ar+–O–O collision configurations at Ec.m. near the thresholds of reactions (2) and (3).
    DOI:
    10.1063/1.457867
点击查看最新优质反应信息