摘要:
Addition of aldehyde (RCHO; R = n-octyl, Ph, p-Tol, p-MeOC(6)H(4), p-CF3C6H4) to [Rh((PPr3)-Pr-i)(2)Cl](2) (1) results in rapid addition of the aldehyde C-H bond to yield Rh((PPr3)-Pr-i)(2)-ClH[C(O)R] (2-R). 2-Ph was isolated, and a single-crystal X-ray diffraction study reveals a trigonal-bipyramidal structure with a small H-Rh-C(acyl) angle of 85(4)degrees. Enthalpies of addition to 1 were measured by solution calorimetry (R, Delta H/(kcal/mol)): octyl, -15.2 +/- 0.3; Ph, -10.8 +/- 0.4; p-Tol, -10.6 +/- 0.4; p-CF3C6H4, -12.7 +/- 0.4; p-MeOC(6)H(4), -10.5 +/- 0.3. Electron-withdrawing para substituents on the aromatic aldehydes favor addition. Addition of nonanal is more favorable than addition of benzaldehydes, probably due to steric effects, particularly the close hydride-phenyl contact found in 2-Ph. 1 reacts with acyl chlorides (RC(O)Cl, R = octyl, Ph) rapidly to give Rh((PPr3)-Pr-i)(2)Cl-2[C(O)R] (3-R). 3-Ph possesses a square-pyramidal structure. The enthalpies of addition were also measured calorimetrically (R, Delta H/(kcal/mol)): octyl, -24.6 +/- 0.3; Ph, -21.7 +/- 0.3. Relative to the addition of acyl chlorides, the exothermicity of aldehyde addition is greater than would be expected on the basis of thermodynamic data for related late-transition-metal complexes.