摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-Ethenylium-1-yl | 80541-07-7

中文名称
——
中文别名
——
英文名称
1-Ethenylium-1-yl
英文别名
vinylidene radical cation
1-Ethenylium-1-yl化学式
CAS
80541-07-7;128629-32-3
化学式
C2H2
mdl
——
分子量
26.0379
InChiKey
PIDCOQBXPFWHKL-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.48
  • 重原子数:
    2.0
  • 可旋转键数:
    0.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0.0
  • 氢给体数:
    0.0
  • 氢受体数:
    0.0

反应信息

  • 作为产物:
    参考文献:
    名称:
    Evidence for a difference in the dissociation mechanisms of acetylene (HCCH) and vinylidene (H2CC:) from charge inversion mass spectrometry
    摘要:
    亚乙烯基和乙炔是最简单的烃类异构体,而亚乙烯基是最简单的不饱和炔。使用Na、K、Rb和Cs靶材从乙炔衍生的C2H2+阳离子的电荷反转质谱与从亚乙烯基氯(1,1-二氯乙烯)衍生的质谱明显不同。电荷反转质谱中负离子的形成过程是:通过近共振中和,然后自发解离,最后形成吸热负离子。在这些光谱中,相对于C2H−峰的C2−峰强度随着异构体C2H2+阳离子的靶材电离势降低而增加。C2−阴离子的形成是由于激发态C2H2中性分子解离为C2和H2。对于HCCH和H2CC,相对于C2H−峰的C2−峰强度与靶材种类有关:不能用激发态C2H2中性分子的内能来解释。这种差异表明,异构体C2H2中性分子在1,2-氢原子迁移之前解离为C2H和H。
    DOI:
    10.1039/b212834a
点击查看最新优质反应信息

文献信息

  • The effects of reactant vibrational, fine structure, and collision energy on the reactions of OCS<sup>+</sup>with C<sub>2</sub>H<sub>2</sub>: Complementary studies of reactions in the [C<sub>2</sub>H<sub>2</sub>+OCS]<sup>+</sup>system
    作者:Baorui Yang、Yu‐hui Chiu、Scott L. Anderson
    DOI:10.1063/1.460275
    日期:1991.5.15
    Resonance-enhanced multiphoton ionization has been used to create state-selected OCS+ ions, which are then reacted with C2H2 in a guided-beam tandem mass spectrometer. OCS+ can be produced with excitation in all three of its vibrational modes, in either the upper or lower fine structure electronic state. Absolute cross sections for all product channels (C2H+2, C2HnS+(n=1, 2), and S+) are reported as a function of collision energy and vibrational state in the range from 0.06–4.5 eV. Different modes of nuclear motion have markedly different effects on reactivity and branching ratios. Production of C2H2S+, is the major chemical reaction channel, and its formation is strongly inhibited by collision energy, but only weakly affected by vibrational and fine structure state. The cross section for charge transfer (CT) shows vibrational effects that change with collision energy. For collision energies below 0.3 eV, CT is enhanced by all forms of nuclear motion, while at higher energies CT is weakly enhanced by C–S stretching, strongly enhanced by C–O stretching, and inhibited by bending. Both C2HS+ and S+ are minor channels, which turn on at higher collision energies. They are weakly affected by vibrational energy and fine structure state. These results are compared with those from our complementary study [T. M. Orlando, B. Yang, Y. Chiu, and S. L. Anderson, J. Chem. Phys. 92 7356 (1990)] of the other charge state of the [C2H2+OCS]+ system: reactions of C2H+2 with OCS. This allows comparison of the effects of 12 different reactant internal energy states on the same product channels.
查看更多