摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(l3-oxidaneylidyne)tetrakis((1,1,1-trifluoro-2-methylpropan-2-yl)oxy)tungsten | 1034311-60-8

中文名称
——
中文别名
——
英文名称
(l3-oxidaneylidyne)tetrakis((1,1,1-trifluoro-2-methylpropan-2-yl)oxy)tungsten
英文别名
WO(OCMe2CF3)4
(l3-oxidaneylidyne)tetrakis((1,1,1-trifluoro-2-methylpropan-2-yl)oxy)tungsten 化学式
CAS
1034311-60-8
化学式
C16H24F12O5W
mdl
——
分子量
708.194
InChiKey
MDCWSIDKJAPVAD-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    (l3-oxidaneylidyne)tetrakis((1,1,1-trifluoro-2-methylpropan-2-yl)oxy)tungsten 二乙二醇二甲醚 为溶剂, 450.0~550.0 ℃ 、46.66 kPa 条件下, 反应 2.5h, 生成 W18O49
    参考文献:
    名称:
    部分氟化的氧代-醇盐钨(vi)配合物作为WO x纳米材料沉积的前体†
    摘要:
    部分氟化的氧代-醇盐钨(VI)配合物WO(OR)4 [ 4 ; R = C(CH 3)2 CF 3,5 ; 已经合成了R = C(CH 3)(CF 3)2 ]作为WO x纳米晶体材料的化学气相沉积(CVD)的前体。通过氟代醇盐的钠盐与WOCl 4之间的盐复分解制备配合物4和5。晶体结构分析允许比较4和5中的键合随着氟烷氧化物配体的氟含量变化。通过质谱和热重分析筛选作为CVD前体的5,随后沉积WO x纳米棒。
    DOI:
    10.1039/c4dt00407h
  • 作为产物:
    描述:
    [NW(OCMe2CF3)3]3 在 hexyne-3 作用下, 以 甲苯 为溶剂, 以24%的产率得到(l3-oxidaneylidyne)tetrakis((1,1,1-trifluoro-2-methylpropan-2-yl)oxy)tungsten
    参考文献:
    名称:
    Synthetic, Mechanistic, and Computational Investigations of Nitrile-Alkyne Cross-Metathesis
    摘要:
    The terminal nitride complexes NW(OC(CF3)(2)Me)(3)(DME) (1-DME), [Li(DME)(2)][NW(OC(CF3)(2)Me)(4)] (2), and [NW(OCMe2CF3)(3)](3) (3) were prepared in good yield by salt elimination from [NWCl3](4). X-ray structures revealed that 1-DME and 2 are monomeric in the solid state. All three complexes catalyze the cross-metathesis of 3-hexyne with assorted nitriles to form propionitrile and the corresponding alkyne. Propylidyne and substituted benzylidyne complexes RCW(OC(CF3)(2)Me)(3) were isolated in good yield upon reaction of 1-DME with 3-hexyne or 1-aryl-1-butyne. The corresponding reactions failed for 3. Instead, EtCW(OC(CF3)Me-2)(3) (6) was prepared via the reaction of W-2(OC(CF3)Me-2)(6) with 3-hexyne at 95 degrees C. Benzylidyne complexes of the form ArCW(OC(CF3)Me-2)(3) (Ar = aryl) then were prepared by treatment of 6 with the appropriate symmetrical alkyne ArCCAr. Three coupled cycles for the interconversion of 1-DME with the corresponding propylidyne and benzylidyne complexes via [2 + 2] cycloaddition-cycloreversion were examined for reversibility. Stoichiometric reactions revealed that both nitrile-alkyne cross-metathesis (NACM) cycles as well as the alkyne cross-metathesis (ACM) cycle operated reversibly in this system. With catalyst 3, depending on the aryl group used, at least one step in one of the NACM cycles was irreversible. In general, catalyst 1-DME afforded more rapid reaction than did 3 under comparable conditions. However, 3 displayed a slightly improved tolerance of polar functional groups than did 1-DME. For both 11-DME and 3, ACM is more rapid than NACM under typical conditions. Alkyne polymerization (AP) is a competing reaction with both 1-DME and 3. It can be suppressed but not entirely eliminated via manipulation of the catalyst concentration. As AP selectively removes 3-hexyne from the system, tandem NACM-ACM-AP can be used to prepare symmetrically substituted alkynes with good selectivity, including an arylene-ethynylene macrocycle. Alternatively, unsymmetrical alkynes of the form EtCCR (R variable) can be prepared with good selectivity via the reaction of RCN with excess 3-hexyne under conditions that suppress AP. DFT calculations support a [2 + 2) cycloaddition-cycloreversion mechanism analogous to that of alkyne metathesis. The barrier to azametalacyciobutadiene ring formation/breakup is greater than that for the corresponding metalacyclobutadiene. Two distinct high-energy azametalacyclobutadiene intermediates were found. These adopted a distorted square pyramidal geometry with significant bond localization.
    DOI:
    10.1021/ja800020w
点击查看最新优质反应信息