摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Osmium, tricarbonylbis(triphenylphosphine)- | 33635-55-1

中文名称
——
中文别名
——
英文名称
Osmium, tricarbonylbis(triphenylphosphine)-
英文别名
Os(CO)3(triphenylphosphine)2;Os(CO)3(PPh3)2
Osmium, tricarbonylbis(triphenylphosphine)-化学式
CAS
33635-55-1;20332-51-8
化学式
C39H30O3OsP2
mdl
——
分子量
798.813
InChiKey
QNOCADOSFNZISH-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    xenon fluoride 、 Osmium, tricarbonylbis(triphenylphosphine)-二氯甲烷-D2 为溶剂, 生成 OsF(COF)(CO)2(P(C6H5)3)2
    参考文献:
    名称:
    钌和的酰氟配合物。[ OC -6-13] [RuF 2(CO)2(PPh 3)2 ]·CD 2 Cl 2的晶体结构
    摘要:
    在二氯甲烷中将XeF 2氧化成[M(CO)3(PPh 3)2 ](M = Ru或Os)时,已经确定了钌和的氟酰基络合物。通过添加BF 3来探测反应的机理,该过程包括XeF +氧化金属中心,然后在配位的CO处被F –发生亲核攻击。对于M = Ru,氟酰基络合物在室温下不稳定并分解。通过将CO消除为[ OC -6-13] [RuF 2(CO)2(PPh 3)2通过X射线晶体学已经确认了其配体排列的化合物。对于M = Os,通过将溶液中的氟代酰基物质加热几个小时而获得类似的络合物。所有产品均已通过IR,19 F和31 P NMR光谱进行了表征。
    DOI:
    10.1039/dt9950001073
  • 作为产物:
    参考文献:
    名称:
    的合成,结构和的反应dihapto -甲醛络合物,锇(η 2 -CH 2 O)(CO)2(PPH 3)2
    摘要:
    OS(η 2 -CH 2 O)(CO)2(PPH 3)2从与零价络合物,锇(CO)甲醛的直接反应的结果2(PPH 3)3。OS(η的结构2 -CH 2 O)(CO)2(PPH 3)2,用X射线晶体学确定。晶体是三斜晶,空间群P,a 18.739(2),b 11.157(1),c 9.986(1)Å,α116.70(1),β93.20(1),γ107.93(1)°,V 1727.69Å 3,ž= 2,D m 1.55(2),D c 1.57 g cm -3。通过全矩阵最小二乘法对原子参数进行细化,对所有非氢原子采用各向异性热参数,除了苯环的碳原子外。甲醛氢原子位于不同的电子密度图上,其他氢也包括在计算位置中。对于在自动衍射仪上测得的3508次唯一观察到的反射,最终残差为R = 0.047和R w = 0.061。
    DOI:
    10.1016/s0022-328x(00)81212-7
点击查看最新优质反应信息

文献信息

  • Electronic and steric effects in fragmentation reactions of Os<sub>3</sub>(CO)<sub>9</sub>(μ-C<sub>4</sub>Ph<sub>4</sub>)
    作者:Kevin A. Bunten、Consuelo Moreno、Anthony J. Poë
    DOI:10.1039/b418940j
    日期:——
    P-Donor nucleophiles of cone angle ≥145° are known to react with Os3(CO)9(μ-C4Ph4) quite differently from those with cone angles ≤143°. A detailed and systematic kinetic study of the rather slow kinetics of reactions with 11 of the larger nucleophiles is described, and the results are analysed according to standard QALE protocols. (QALE = quantitative analysis of ligand effects). The results are compared with those previously reported for 17 of the smaller phosphines, which react much more rapidly. The pronounced difference in behaviour between these two groups of nucleophiles is ascribable to major differences between the ease of formation of different intermediate Os3(CO)9L(μ-C4Ph4) adducts. The cluster is proposed to be capable of opening up to form a nido structure that has a small, well defined opening capable of accommodating any of the smaller nucleophiles quite easily. However, this opened nido structure is concluded to be extremely rigid and incapable of further opening to accommodate any of the larger nucleophiles. These have to take advantage of an alternative nido structure that contains a much larger opening but that requires considerably more energy for it to be formed. These results are compared with those for the clusters M5C(CO)15 (M = Ru or Fe), which show somewhat similar behaviour. This is ascribed to the complexity of the structures of the clusters that allows them to form alternative nido structures of the sort described, something that more symmetrical clusters are apparently incapable of doing.
    已知锥角≥145°的P给体亲核试剂与Os3(CO)9(μ-C4Ph4)的反应方式与锥角≤143°的亲核试剂截然不同。本文详细系统地研究了11种较大亲核试剂与Os3(CO)9(μ-C4Ph4)反应的缓慢动力学过程,并按照标准QALE协议分析了结果(QALE=配体效应的定量分析)。结果与之前报道的17种较小膦类亲核试剂的反应结果进行比较,后者反应速度快得多。这两组亲核试剂行为上的显著差异可归因于不同中间体Os3(CO)9L(μ-C4Ph4)络合物形成难易程度的主要差异。提出的簇合物能够打开形成一种具有小而明确开口的巢型结构,可以很容易地容纳任意一种较小的亲核试剂。然而,这种打开的巢型结构被认为是极其刚性的,无法进一步打开以容纳任何较大的亲核试剂。这些较大的亲核试剂必须利用一种开口大得多的替代巢型结构,但形成该结构需要更多的能量。这些结果与M5C(CO)15簇合物(M=Ru或Fe)的结果进行了比较,后者表现出类似的行为。这归因于簇合物结构的复杂性,使得它们能够形成上述替代的巢型结构,而通常对称性更高的簇合物则显然无法做到这一点。
  • Steric limitations in associative substitution reactions of Os3(CO)9(μ-C4Ph4)
    作者:Anthony J. Poë、David H. Farrar、Ravindranath Ramachandran、Consuelo Moreno
    DOI:10.1016/s0020-1693(97)05992-6
    日期:1998.6
    Reactions of the cluster Os-3(CO)(9)(mu-C4Ph4) (I) with a large number of smaller P-donor nucleophiles (Tolman cone angle theta less than or equal to 143 degrees) proceed rapidly in heptane at room temperature via associative adduct formation to form the monosubstituted products. However, reactions with several larger P-donor nucleophiles (theta greater than or equal to 145 degrees) in heptane at room temperature yield, in a single observable bimolecular step, a mixture of mononuclear and dinuclear products and it is therefore not possible to synthesize the monosubstituted clusters directly with these larger ligands. Crystallographic structures of Os-3(CO)(8)(etpb)(mu-C4Ph4).(CH3OH) (2etpb) (etpb = P(OCH2)(3)CEt) and Os-3(CO)(8)(P(OPh)3)(mu-C4Ph4).(C6H14) (2P(OPh)(3)) have been determined and show that the substituent has displaced a CO ligand from the Os(CO)(4) moiety in 1. (C) 1998 Elsevier Science S.A. All rights reserved.
  • Photochemical reactivity of Os3(CO)12 and thermal activation of diosmacyclobutanes towards alkynes
    作者:Michael R. Burke、Josef Takats
    DOI:10.1016/0022-328x(86)80093-6
    日期:1986.3
  • Wavelength-dependent primary photoprocesses of triosmium dodecacarbonyl in fluid solution and in rigid alkane glasses at low temperature: spectroscopic detection, characterization, and reactivity of coordinatively unsaturated triosmium undecacarbonyl
    作者:James G. Bentsen、Mark S. Wrighton
    DOI:10.1021/ja00249a015
    日期:1987.7
  • Alkyne Ligand Enhancement of the Substitution Lability of Mononuclear Osmium, Ruthenium, and Iron Carbonyls
    作者:Jean Pearson、Jason Cooke、Josef Takats、R. B. Jordan
    DOI:10.1021/ja9640049
    日期:1998.2.1
    The kinetic influence of an alkyne ligand, hexafluorobut-2-yne (HFB), has been investigated by studying the reactions of phosphines (PR3) with the complexes M(CO)(4)(eta(2)-HFB) (M = Fe, Ru, Os). The rate of production of M(CO)(3)(PR3)(eta(2)-HFB) is independent of the nature and concentration of the phosphine in all cases, indicating that the rate-controlling step is CO dissociation. The kinetic parameters, k(1) (s(-1), 25 degrees C), Delta H* (kJ mol(-1)), and Delta S* (cal mol(-1) K-1) are: 9.5, 88.2 +/- 2.3, 70 +/- 10 (Fe); 1.25 x 10(-2), 103.6 +/- 2.4, 66 +/- 8.6 (Ru); 3.5 x 10(-3), 99.5 +/- 0.8, 21 +/- 2.7 (Os). When the rate constants at 25 degrees C for M(CO)(4)(eta(2)-HFB) are compared to those of the parent M(CO)(5), the ratios are similar to 3 x 10(13), 1.8 x 10(2) and 1 x 10(7) for M = Fe, Ru, and Os, respectively. Clearly the alkyne increases the substitution lability, and the effect is spectacular with Fe, very large with Os, and substantial but relatively more modest with Ru, The increased lability results mainly from a reduced Delta H* of similar to 80, 10, and 33 kJ mol(-1) for Fe, Ru, and Os, respectively, and this is attributed largely to stabilization of the transition state by 4-electron donation from the alkyne ligand. Also reported are kinetics of formation of some trans M(CO)(2)(PR3)(2)(eta(2)-HFB) complexes and an extension of earlier work on the Os(CO)(5)/PPh3 system.
查看更多