摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

[2,3,4,5-Ph4(η4-C4CO)Ru(CO)2NH(Ph)(CHCH3Ph)] | 916165-87-2

中文名称
——
中文别名
——
英文名称
[2,3,4,5-Ph4(η4-C4CO)Ru(CO)2NH(Ph)(CHCH3Ph)]
英文别名
——
[2,3,4,5-Ph4(η4-C4CO)Ru(CO)2NH(Ph)(CHCH3Ph)]化学式
CAS
916165-87-2
化学式
C45H35NO3Ru
mdl
——
分子量
738.848
InChiKey
LDWYDFUXFWLGQC-ZDJNGQJDSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    RuH(CO)25-C5(OH)Ph4] 、 [2,3,4,5-Ph4(η4-C4CO)Ru(CO)2NH(Ph)(CHCH3Ph)]二氯甲烷-D2 为溶剂, 生成 1-hydroxytetraphenylcyclopentadienyl(tetraphenyl-2,4-cyclopentadien-1-one)-μ-hydrotetracarbonyldiruthenium(II)
    参考文献:
    名称:
    Mechanistic Study of Hydrogen Transfer to Imines from a Hydroxycyclopentadienyl Ruthenium Hydride. Experimental Support for a Mechanism Involving Coordination of Imine to Ruthenium Prior to Hydrogen Transfer
    摘要:
    Reaction of [2,3,4,5-Ph-4(eta(5)-C4COH) Ru(CO)(2)H] (2) with different imines afforded ruthenium amine complexes at low temperatures. At higher temperatures in the presence of 2, the complexes decomposed to give [Ru-2(CO)(4)(mu-H)(C4Ph4COHOCC4Ph4)] (1) and free amine. Electron-rich imines gave ruthenium amine complexes with 2 at a lower temperature than did electron-deficient imines. The negligible deuterium isotope effect (k(RuHOH)/k(RuDOD) = 1.05) observed in the reaction of 2 with N-phenyl[1-(4-methoxyphenyl) ethylidene]amine (12) shows that neither hydride (RuH) nor proton (OH) is transferred to the imine in the rate-determining step. In the dehydrogenation of N-phenyl-1-phenylethylamine (4) to the corresponding imine 8 by [2,3,4,5-Ph-4(eta(4)-C4CO) Ru(CO)(2)] (A), the kinetic isotope effects observed support a stepwise hydrogen transfer where the isotope effect for C-H cleavage (k(CHNH)/k(CDNH) = 3.24) is equal to the combined (C-H, N-H) isotope effect (k(CHNH)/k(CDND) = 3.26). Hydrogenation of N-methyl(1-phenylethylidene) amine (14) by 2 in the presence of the external amine trap N-methyl-1-(4-methoxyphenyl) ethylamine (16) afforded 90-100% of complex [2,3,4,5-Ph-4(eta(4)-C4CO)] Ru(CO)(2)NH(CH3)(CHPhCH3) (15), which is the complex between ruthenium and the amine newly generated from the imine. At -80 degrees C the reaction of hydride 2 with 4-BnNHsC(6)H(9)=NPh (18), with an internal amine trap, only afforded [2,3,4,5-Ph-4(eta(4)-C4CO)](CO)(2)RuNH(Ph)(C6H10-4-NHBn) (19), where the ruthenium binds to the amine originating from the imine, showing that neither complex A nor the diamine is formed. Above -8 degrees C complex 19 rearranged to the thermodynamically more stable [Ph-4(eta(4)-C4CO)](CO)(2)RuNH(Bn)(C6H10-4-NHPh) (20). These results are consistent with an inner sphere mechanism in which the substrate coordinates to ruthenium prior to hydrogen transfer and are difficult to explain with the outer sphere pathway previously proposed.
    DOI:
    10.1021/ja061494o
  • 作为产物:
    描述:
    参考文献:
    名称:
    Mechanistic Study of Hydrogen Transfer to Imines from a Hydroxycyclopentadienyl Ruthenium Hydride. Experimental Support for a Mechanism Involving Coordination of Imine to Ruthenium Prior to Hydrogen Transfer
    摘要:
    Reaction of [2,3,4,5-Ph-4(eta(5)-C4COH) Ru(CO)(2)H] (2) with different imines afforded ruthenium amine complexes at low temperatures. At higher temperatures in the presence of 2, the complexes decomposed to give [Ru-2(CO)(4)(mu-H)(C4Ph4COHOCC4Ph4)] (1) and free amine. Electron-rich imines gave ruthenium amine complexes with 2 at a lower temperature than did electron-deficient imines. The negligible deuterium isotope effect (k(RuHOH)/k(RuDOD) = 1.05) observed in the reaction of 2 with N-phenyl[1-(4-methoxyphenyl) ethylidene]amine (12) shows that neither hydride (RuH) nor proton (OH) is transferred to the imine in the rate-determining step. In the dehydrogenation of N-phenyl-1-phenylethylamine (4) to the corresponding imine 8 by [2,3,4,5-Ph-4(eta(4)-C4CO) Ru(CO)(2)] (A), the kinetic isotope effects observed support a stepwise hydrogen transfer where the isotope effect for C-H cleavage (k(CHNH)/k(CDNH) = 3.24) is equal to the combined (C-H, N-H) isotope effect (k(CHNH)/k(CDND) = 3.26). Hydrogenation of N-methyl(1-phenylethylidene) amine (14) by 2 in the presence of the external amine trap N-methyl-1-(4-methoxyphenyl) ethylamine (16) afforded 90-100% of complex [2,3,4,5-Ph-4(eta(4)-C4CO)] Ru(CO)(2)NH(CH3)(CHPhCH3) (15), which is the complex between ruthenium and the amine newly generated from the imine. At -80 degrees C the reaction of hydride 2 with 4-BnNHsC(6)H(9)=NPh (18), with an internal amine trap, only afforded [2,3,4,5-Ph-4(eta(4)-C4CO)](CO)(2)RuNH(Ph)(C6H10-4-NHBn) (19), where the ruthenium binds to the amine originating from the imine, showing that neither complex A nor the diamine is formed. Above -8 degrees C complex 19 rearranged to the thermodynamically more stable [Ph-4(eta(4)-C4CO)](CO)(2)RuNH(Bn)(C6H10-4-NHPh) (20). These results are consistent with an inner sphere mechanism in which the substrate coordinates to ruthenium prior to hydrogen transfer and are difficult to explain with the outer sphere pathway previously proposed.
    DOI:
    10.1021/ja061494o
点击查看最新优质反应信息