摘要:
非异位取代的碳化炔锰络合物 (η5-MeC5H4)(CO)2MnC(R)CCR′ (3; 3a: R = R′ = Ph, 3b:R=Ph,R′=Tol,3c:R=Tol,R′=Ph),用适当的炔锂试剂 LiCCR′(R′=Ph,Tol)处理相应的炔烃络合物[(η5-MeC5H4)(CO)2MnCR][BPh4]([2][BPh4])后,以高产率合成。使用四苯基硼酸盐作为与阳离子碳炔配合物相关的反阴离子具有决定性的意义。报告了 (η5-MeC5H4)(CO)2MnC(Tol)CCPh (3c) 及其前体 [(η5-MeC5H4)(CO)2MnCTol][BPh4]([2b](BPh4])的 X 射线结构。研究了复合物 3 对膦的反应性。在 PPh3 存在的情况下,络合物 3 充当迈克尔受体,在膦对远端炔基碳原子的亲核攻击作用下,产生了齐射离子型 σ- 烯基膦络合物 (η5-MeC5H4)(CO)2MnC(R)CC(PPh3)R′ (5)。络合物 5 在溶液中表现出一种动态过程,这种动态过程被合理地解释为烯取代基围绕烯轴的快速[核磁共振时间尺度]旋转;(η5-MeC5H4)(CO)2MnC(Ph)CC(PPh3)Tol (5b)的 X 射线结构中的计量特征支持这一提议。在 PMe3 的存在下,络合物 3 的碳碳原子发生亲核反应,生成齐聚物σ-丙炔基膦络合物 (η5-MeC5H4)(CO)2MnC(R)(PMe3)CCR′ (6)。络合物 6 在溶液中很容易发生异构,通过[(η5-MeC5H4)(CO)2MnC(R′)CC(PMe3)R]片段的 1,3 移位,生成σ-烯基磷鎓络合物 (η5-MeC5H4)(CO)2MnC(R′)CC(PMe3)R)(7)。PPh2Me 对 3 的亲核攻击不具有选择性,会导致 σ-丙炔基膦络合物 (η5-MeC5H4)(CO)2MnC(R)(PPh2Me)CCR′ (9) 和 σ-烯基膦络合物 (η5-MeC5H4)(CO)2MnC(R)CC(PPh2Me)R′ (10) 的混合物。与络合物 6 一样,络合物 9 也很容易发生异构,生成 σ-烯基磷鎓络合物 (η5-MeC5H4)(CO)2MnC(R′)CC(PPh2Me)R(10′)。缓和加热后,络合物 7 以及 10 和 10′ 的混合物环化,得到 σ-二氢磷鎓络合物 (η5-MeC5H4)(CO)2MnCC(R′)PMe2CH2CH(R) (8)、以及络合物 (η5-MeC5H4)(CO)2MnCC(Ph)PPh2CH2CH(Tol) (11) 和 (η5-MeC5H4)(CO)2MnCC(Tol)PMe2CH2CH(Ph) (11′) 的混合物。络合物 3 与仲膦 HPR12(R1 = Ph、Cy)的反应得到了η2-烯络合物(η5-MeC5H4)(CO)2Mn[η2-{R12PC(R)CC(R′)H}]的混合物(12)、以及η4-乙烯酮络合物 (η5-MeC5H4)(CO)Mn[η4-{R12PC(R)CHC(R′)CO}] (13) 和 (η5-MeC5H4)(CO)Mn[η4-{R12PC(R′)CHC(R)CO}] (13′)。报告了 (η5-MeC5H4)(CO)2Mn[η2-{Ph2PC(Ph)CC(Tol)H}] (12b) 和 (η5-MeC5H4)(CO)Mn[η4-{Cy2PC(Ph)CHC(Ph)CO}] (13d) 的固态结构。最后,提出了一种可能解释物种 12、13 和 13′ 形成的机理。