摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(η(5)-C5H5)3USi(trimethylsilyl)3 | 163394-08-9

中文名称
——
中文别名
——
英文名称
(η(5)-C5H5)3USi(trimethylsilyl)3
英文别名
——
(η(5)-C5H5)3USi(trimethylsilyl)3化学式
CAS
163394-08-9
化学式
C24H42Si4U
mdl
——
分子量
680.968
InChiKey
YREJJVHYCJTNIP-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为产物:
    描述:
    tris(cyclopentadienyl)chlorouranium(IV) 、 tris(trimethylsilyl)silyllithium*3(tetrahydrofuran) 以 乙醚 为溶剂, 以73%的产率得到(η(5)-C5H5)3USi(trimethylsilyl)3
    参考文献:
    名称:
    Metal-silicon bonding energetics in organo-Group 4 and organo—f-element complexes. Implications for bonding and reactivity
    摘要:
    Metal-silicon bond disruption enthalpies have been measured for a series of U, Zr, and Sm metallocene complexes: Cp(3)USi(TMS)(3), Cp(2)Zr(Cl)Si(TMS)(3), Cp(2)Zr(Me)Si(TMS)(3), Cp(2)Zr(TMS)Si(TMS)(3), Cp(2)Zr(TMS)O-(t)Bu, Cp'2SmSiH(TMS)(2) (Cp=eta(5)-C5H5, Cp' = eta(5)-Me(5)C(5), TMS = trimethylsilyl). Data were obtained by anaerobic batch-titration solution calorimetry in toluene. Derived metal-ligand bond enthalpies D(L(n)M-R) in kcal mol(-1) are: D[Cp(3)U-Si(TMS)(3)] = 37(3), D[Cp(2)(Cl)Zr-Si(TMS)(3)] = 57(3), D[Cp(2)(Me)Zr-Si(TMS)(3)] = 56(5), D[Cp(2)(Si(TMS)(3))Zr-Me] = 66(5), D[Cp(2)(O-(t)Bu)Zr-TMS] = 60(5), D[Cp(2)(TMS)Zr-Si(TMS)(3)] = 42(11), D[Cp(2)(Si(TMS)(3))Zr-TMS] = 45(7), D[Cp'Sm-2-SiH(TMS)(2)] = 43(5). These results show that metal-silicon bond disruption enthalpies involving these electron-deficient metals are substantially smaller than those of the corresponding metal hydride and hydrocarbyl bends. These data in combination with previously measured metal-ligand bond enthalpies allow thermodynamic analyses of a variety of stoichiometric and catalytic transformations involving metal silyl functionalities. The latter include potential pathways for dehydrogenative silane polymerization, dehydrogenative silane-hydrocarbon coupling, olefin hydrosilylation, and dehydrogenative silane-amine coupling. It is not uncommon for there to be multiple pathways which effect the same catalytic transformation and which contain no steps having major enthalpic impediments.
    DOI:
    10.1016/0020-1693(94)04265-w
点击查看最新优质反应信息