摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

[Mo(CO)(dppe)2] | 67528-43-2

中文名称
——
中文别名
——
英文名称
[Mo(CO)(dppe)2]
英文别名
——
[Mo(CO)(dppe)2]化学式
CAS
67528-43-2
化学式
C53H48MoOP4
mdl
——
分子量
920.799
InChiKey
CZHFLWALRYNVLF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    [Mo(CO)(dppe)2] 在 H2 作用下, 以 not given 为溶剂, 生成
    参考文献:
    名称:
    过渡金属的分子氢配合物。3. 新配合物 Mo(CO)(dppe)2(H2) 以及二氢和二氢化物形式之间的溶液平衡的证据,M-.eta.2-H2.dblarw。HMH,在 M(CO)3(PR3)2(H2) 中
    摘要:
    分子氢与过渡金属的配位现已牢固确立,最初是在稳定的、结构特征化的配合物 M(CO)/sub 3/(PR/sub 3/)/sub 2/(eta/sup 2/-H/sub 2 /) (M = Mo, W; R = Cy, i-Pr),然后在低温稳定的 Cr(CO)/sub 5/(H/sub 2/),最近在 IrH(H/sub 2/ )(PPh/sub 3/)/sub 2/(C/sub 13/H/sub 8/N))SbF/sub 6/, (IrH/sub 2/(H/sub 2/)/sub 2/L /sub 2/)/sup +/,和 (FeH(H/sub 2/)(dppe)/sub 2/)BF/sub 4/。为了更好地定义 H/sub 2/ 以分子方式结合而不是裂解为氢化物配体的空间和电子要求,这里报道了新的稳定 H/sub 2/ 复合物,Mo(CO)(dppe)/sub 2/(H/sub 2/)
    DOI:
    10.1021/ja00266a058
  • 作为产物:
    描述:
    trans-[Mo(N2)(CO)(dppe)2] 以 为溶剂, 生成 [Mo(CO)(dppe)2]
    参考文献:
    名称:
    在低价钼中心将苯甲醛亚胺转化为异氰酸酯。反-[Mo(RNC)(N 2)(Ph 2 PCH 2 CH 2 PPh 2)2 ](R =芳基,烷基)1的异氰酸酯-二氮配合物的制备和反应性
    摘要:
    钼二氮配合物反式-[Mo(N 2)2(dppe)2 ](1 ; dppe = Ph 2 PCH 2 CH 2 PPh 2)与苯甲醛亚胺PhCH NR(R = Ph,C 6 H 4 Me- p,C 6 H 4 OMe- p,C 6 H 4 F- p,C 6 H 4 NMe 2 - p,Bu n,Pr i,CH 2苯中的Ph)在回流下得到一系列异氰化物-二氮配合物反式-[Mo(RNC)(N 2)(dppe)2 ](7),同时形成苯。7a(R = Ph)的结构已通过X射线晶体学确定。用CO(1 atm)或p -MeOC 6 H 4 CN处理7a和7f(R = Bu n)会导致这些配体取代配位的N 2,从而提供反式-[Mo(RNC)(L)( dppe)2 ](L = CO(9),p -MeOC 6H 4 CN(10))。复杂的含有两种不同异腈反式- [沫(PhNC)(BU吨NC)(DPPE)2 ]
    DOI:
    10.1021/om9904605
点击查看最新优质反应信息

文献信息

  • Preparation and properties of dinitrogenmolybdenum complexes
    作者:T Tatsumi、H Tominaga、M Hidai、Y Uchida
    DOI:10.1016/s0022-328x(00)84523-4
    日期:1980.10
    The complexes Mo(CO)L(DPE)2 (L = amides, imidazoles, amines, nitriles, pyridines, and olefins; DPE = Ph2PCH2CH2PPh2) have been obtained by the reaction of trans-Mo(CO)(N2)(DPE)2 · C6H6 or Mo(CO)(DPE)2 with the corresponding ligand. The CO stretching vibrations in the IR spectra of these complexes are found in the range of 1680–1880 cm−1. The variation in v(CO) is interpreted in terms of donor and
    通过反式-Mo(CO)的反应获得了配合物Mo(CO)L(DPE)2(L =酰胺,咪唑,胺,腈,吡啶和烯烃; DPE = Ph 2 PCH 2 CH 2 PPh 2)。)(N 2)(DPE)2 · C 6 H 6或具有相应配体的Mo(CO)(DPE)2。这些配合物的红外光谱中的CO拉伸振动在1680–1880 cm -1范围内。v(C = O)的变化是根据配体的供体和受体性质来解释的。v极低酰胺和咪唑的配合物的(CO)可能是由于其强大的π供体性质。含有腈,NH 3和4-氨基吡啶的配合物是稳定的,但在N 2下重结晶时其他配体容易丢失,从而获得反式-Mo(CO)(N 2)(DPE)2 · C 6 H 6。配体的配位能力也受其体积的很大影响。在反式-Mo(N 2)2(DPE)2与NH 3的反应中,一分子的连接二氮被取代,得到Mo(N 2)(NH 3))(DPE)2。
  • Thermal reactions of metal complexes under quasi-isothermal and quasi-isobaric conditions
    作者:Masato Kaneda、Masatatsu Suzuki、Akira Uehara
    DOI:10.1016/0040-6031(89)87250-8
    日期:1989.2
    100–170 ° C to produce a five-coordinated intermediate [Mo(CO)(dppe)2], which then undergoes disproportionation to produce cis-[Mo(CO)2(dppe)2] and unknown materials. When L is N2 or C6H5CN, both the complexes evolve dinitrogen, but they undergo complicated decomposition with no formation of a stable five-coordinated intermediate. The stability of the five-coordinated intermediate [Mo(CO)-(dppe)2] is attributed
    在准等温和准等压条件(Q 条件)和开放动态条件(D 条件)下研究了反式-[Mo(N2)(L)(dppe)2] 的固态热反应。(L是选自CO、N2和C6H5CN的π-接受配体,dppe代表1,2-双(二苯基膦)乙烷。)结果表明反式-[Mo(N2)(CO)-(dppe)2 ]·12C6H6 在 100-170°C 放出二氮加 12C6H6 生成五配位中间体 [Mo(CO)(dppe)2],然后发生歧化生成顺式-[Mo(CO)2(dppe)2]和未知的材料。当 L 为 N2 或 C6H5CN 时,两种配合物都释放出二氮,但它们会经历复杂的分解,没有形成稳定的五配位中间体。
  • Experimental and Theoretical Studies of Bonding and Oxidative Addition of Germanes and Silanes, EH<sub>4</sub><sub>-</sub><i><sub>n</sub></i>Ph<i><sub>n</sub></i> (E = Si, Ge; <i>n</i> = 0−3), to Mo(CO)(diphosphine)<sub>2</sub>. The First Structurally Characterized Germane σ Complex
    作者:Jean L. Vincent、Steven Luo、Brian L. Scott、Ray Butcher、Clifford J. Unkefer、Carol J. Burns、Gregory J. Kubas、Agusti Lledós、Feliu Maseras、Jaume Tomàs
    DOI:10.1021/om030569j
    日期:2003.12.1
    Reaction of GeH4 and GeH3Ph with the agostic complex Mo(CO)(dppe)(2) (dppe = Ph2PC2H4PPh2) provides germane sigma complexes Mo(CO)(eta(2) -GeH4-nPhn)(dppe)(2) (n = 0, 1). The coordination in these complexes has been assigned as (eta(2) -Ge-H) on the basis of NMR and IR spectroscopy and by comparison to the analogous complexes of silanes. When the more electron-rich phosphine depe (depe = Et2PC2H4PEt2) is used, oxidative addition (OA) products MoH(GeH3)(CO)(depe)(2) and MoH(GeH2Ph)(CO)(depe)(2) are isolated (NMR and X-ray evidence). However, when the secondary organogermane GeH2Ph2 is used in the depe system, the eta(2)-complex Mo(CO)(eta(2)-GeH2Ph2)(depe)(2) is obtained. This complex was characterized by X-ray crystallography and NMR and IR spectroscopy. The Mo(CO)(eta(2)-GeH3Ph)(dppe)(2) and MO(CO)(eta(2)-GeH2Ph2)(depe)(2) complexes were found to be in tautomeric equilibrium with their OA products in solution. Structure and bonding comparisons are made to the analogous silane complexes, e.g., Mo(CO)(eta(2) -SiH2Ph2)(depe)(2), the X-ray structure for which is also reported. The Ge-H bonds undergo OA much more easily than Si-H, and to obtain further insight into the activation processes, ab initio DFT calculations have been performed on Mo(CO)(EH(4-n)vin(n))(dhpe)(2) model complexes (E = Si, Ge; n = 0-3; dhpe = H2PCH2CH2PH2; vin = CH=CH2) and also the analogous H-2 complex. Because the ease of the whole OA process is a balance between the E-H bonding energy and Mo-E bonding energy, it can be concluded that the factor that makes OA of the Ge-H bond easier than that for Si-H is the relative weakness of the Ge-H bond, despite the fact that the Mo-Ge bond is also weaker. This competition between both factors is also seen for OA of H-2, for which although the Mo-H bonding energy is much higher than Mo-Si and Mo-Ge bonding energies, the H-H bond is also significantly stronger than the Si-H and Ge-H bonds. In general, the ease of OA of molecular hydrogen is between that of germanes and silanes. Calculations show that for alkanes the OA is much more difficult because the loss of the high C-H bond energy (comparable to or greater than that for H-H) is not as well compensated for by the energy of formation of the Mo-C bond due to the weakness of the Mo-C bond.
  • Kubas, Gregory J.; Burns, Carol J.; Eckert, Juergen, Journal of the American Chemical Society, 1993, vol. 115, # 2, p. 569 - 581
    作者:Kubas, Gregory J.、Burns, Carol J.、Eckert, Juergen、Johnson, Susanna W.、Larson, Allen C.、Vergamini, Phillip J.、Unkefer, Clifford J.、Khalsa、Jackson, Sarah A.、Eisenstein, Odile
    DOI:——
    日期:——
查看更多