摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Ph4As[Ir(CO)2I2] | 1162649-21-9

中文名称
——
中文别名
——
英文名称
Ph4As[Ir(CO)2I2]
英文别名
——
Ph<sub>4</sub>As[Ir(CO)<sub>2</sub>I<sub>2</sub>]化学式
CAS
1162649-21-9
化学式
C2I2IrO2*C24H20As
mdl
——
分子量
885.394
InChiKey
JSQVTYLSJZNBMG-UHFFFAOYSA-L
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    烷基卤化物向铑(I)和铱(I)二羰基二碘化物的氧化加成:醇催化羰基化的关键反应
    摘要:
    Alkyl iodides (RI) react with [Rh(CO)2I2]- to give acyl species [Rh(CO)(COR)I3]- (R = Et, (n)Pr, (i)Pr) and with [Ir(CO)2]2]- to give alkyl complexes [RIr(CO)2]2]- (R = Et, (n)Pr, (i)Pr, (n)Bu, n-C5H11, n-C6H13). The reactions are analogous to the known reactions of MeI with [Rh(CO)2I2]- and [Ir(CO)2I2]-. The products are characterized spectroscopically and by an X-ray crystal structure determination for Ph4As[(n-C6H13)Ir(CO)2I3] which showed a fac,cis geometry for the anion. [Crystal structure data: monoclinic, a = 9.408(7) angstrom, b = 19.470(16) angstrom, c = 19.529(12) angstrom, beta = 94.99(5)-degrees, Z = 4, space group P2(1)/n (a nonstandard setting of P2(1)/c C2h5, No. 14); 2446 independent reflections (of 5197 measured) for which \F\/sigma(\F\) > 4.0; R = 0.0966 (R(w) = 0.0921, 238 parameters)]. Kinetic data for the reactions of [Rh(CO)2I2]-with EtI. (n)PrI, and (i)PrI and for [Ir(CO)2I2]- with MeI, EtI, and (n)PrI show that oxidative addition of Ri to [M(CO)2I2]- is first-order in both reactants. For M = Rh, reactions showed clean second-order kinetics below 80-degrees-C, though some decomposition occurred at higher temperatures. For M = Ir, clean second-order kinetics were observed with MeI, but reactions with EtI and (n)PrI showed a more complex kinetic behavior. A competing radical pathway is suggested, which can be quenched by added duroquinone. Second-order rate constants, k2, evaluated over the temperature ranges 70-80-degrees-C (M = Rh) and 35-50-degrees-C (M = Ir) gave the following activation parameters: (M = Rh) DELTAH(double dagger)/kJ mol-1 = 50(+/-1) (R = Me), 56(+/-10) (R = Et), 51(+/-10) (R = (n)Pr), 61(+/-15) (R = (i)Pr); DELTAS(double dagger)/J mol-1 K-1 = -165(+/-4) (R = Me), -195(+/-25) (R = Et), -215(+/-25) (R = (n)Pr), -180(+/-30) (R = (i)Pr); (M = Ir) DELTAH(double dagger)/kJ mol-1 = 54(+/-1) (R = Me), 66(+/-5) (R = Et), 66(+/-3) (R = (n)Pr); DELTAS(double dagger)/J mol-1 K-1 -113(+/-4) (R = Me), -123(+/-15) (R = Et), -132(+/-11) (R = (n)Pr). Comparisons are made between the reactions of methyl iodide and the higher alkyl iodides with both [Rh(CO)2I2]-(relative rates: Me, 1000, Et, 3; (n)Pr, 1.7) and [Ir(CO)2I2]- (relative rates: Me, 1000; Et, 2.3; (n)Pr, 0.75). The similarity to reactivity trends for organic nucleophiles suggests an SN2 mechanism, but with a competing radical pathway for iridium. Relative rates for the two nucleophiles, k(Ir)/k(Rh) ca. 150 (R = Me), 220 (R = Et), and 140 (R = (n)Pr), are estimated. Alkyl isomerization (iso --> n) is observed for both [Rh(CO)(COPr)I3]- and (PrIr(CO)2I3]- and displacement of propene from [Rh(CO)(COPr)I3]- by added ethene gives [Rh(CO)(COEt)Is]-reversibly. A mechanism involving hydridoalkene intermediates is proposed. The data are consistent with the carbonylation of the higher alcohols (ROH) proceeding via rate determining oxidative addition of RI to [Rh(CO)2I2]-, rather than by a route involving a rhodium hydride addition to an olefin derived from the ROH.
    DOI:
    10.1021/om00020a039
  • 作为产物:
    描述:
    Ph4As[Ir(CO)2Cl2] 、 sodium iodide 以 甲醇 为溶剂, 以99%的产率得到Ph4As[Ir(CO)2I2]
    参考文献:
    名称:
    在铱中心竞争激活二甲基甲酰胺的甲基CH键
    摘要:
    在HCl水溶液中,通过在DMF(DMF =二甲基甲酰胺)中回流IrCl 3 ·3H 2 O来合成[AsPh 4 ] [Ir(CO)2 I 3 Me]的过程,然后依次用[AsPh 4 ] Cl处理,NaI和甲基碘,最后从二氯甲烷/戊烷中重结晶,得到三种结晶副产物:[AsPh 4 ] 2 [Ir(CO)I 5 ],[AsPh 4 ] 2 [反式-Ir(CO)I 4 Cl ]和[ASPH 4 ]的[Ir(CO)(κ 2 ö,ç -CH 2NMeCHO)Cl 2 I]。这些中的最后一个,其结构(以及其他结构)由X射线衍射确定,是由二甲基甲酰胺的甲基CH键的活化而不是通常具有更高反应性的醛CH键的活化引起的。
    DOI:
    10.1021/om9002413
点击查看最新优质反应信息

文献信息

  • Synthesis, characterization and DFT studies of electron-rich iridium(I) carbonyl complexes of an unsymmetrical phosphine–phosphine monoselenide ligand and their reactivity towards alkyl halides
    作者:Bhaskar Jyoti Sarmah、Ankur Kanti Guha、Jayashree Nath、Lakshi Saikia
    DOI:10.1016/j.poly.2020.114344
    日期:2020.3
    density at the metal centre. The complexes undergo oxidative addition (OA) reactions with electrophiles like CH3I and C2H5I to form Ir(III) alkyl species like [Ir(CO)R(P ~ Se)2IX]; [R = CH3 (2), C2H5 (3)] which exhibit ν (CO) bands in the region of 2070 cm−1. Kinetic measurements for the CH3I oxidative addition with complex 1a indicate a first order reaction. The complexes have been characterized by elemental
    摘要[[Ir(CO)(P〜Se)2X](1)的一系列卤代羰基铱(I)配合物(其中P-Se = 1,2-双(二苯基膦基甲烷化物); 通过[Ir(CO)2 X 2]-与配体Ph 2 PCH 2 P(Se)Ph 2的反应合成了X = Cl(1a),Br(1b),I(1c)}。配合物在1926 cm-1区域显示单个ν(CO)带​​,与Vaska配合物反式[Ir(CO)Cl(PPh3)2](1965 cm-1)相比,其频率明显更低在属中心增强的电子密度。配合物与亲电子体(如CH3IC2H5I)进行氧化加成(OA)反应,形成Ir(III)烷基,如[Ir(CO)R(P〜Se)2IX];[R = CH3(2),C2H5(3)]在2070 cm-1的区域内显示ν(CO)带​​。与配合物1a的 氧化加成反应的动力学测量表明是一级反应。该复合物已经通过元素分析,IR和NMR光谱表征。密度泛函计算表明
  • Oxidative addition of methyl iodide to [Rh(CO)2I]2: synthesis, structure and reactivity of neutral rhodium acetyl complexes, [Rh(CO)(NCR)(COMe)I2]2
    作者:Anthony Haynes、Peter M. Maitlis、Ian A. Stanbridge、Susanne Haak、Jean M. Pearson、Harry Adams、Neil A. Bailey
    DOI:10.1016/j.ica.2004.03.018
    日期:2004.7
    coordinating solvents, 3a forms mononuclear complexes, [Rh(CO)(sol)2(COMe)I2] (sol=MeCN, MeOH). Complex 3a reacts with pyridine to give [Rh(CO)(py)(COMe)I2]2 and [Rh(CO)(py)2(COMe)I2] and with chelating diphosphines to give [Rh(Ph2P(CH2)nPPh2)(COMe)I2] (n=2, 3, 4). Addition of MeI to [Ir(CO)2(NCMe)I] is two orders of magnitude slower than to [Ir(CO)2I2]−. A mechanism for the reaction of 1 with MeI in
    [Rh(CO)2 I] 2(1)与MeI在腈溶剂中反应,得到中性乙酰基络合物[Rh(CO)(NCR)(COMe)I 2 ] 2(R = Me,3a ; t Bu,3b;乙烯基3c;烯丙基3d)。通过X射线晶体学对3a和3b证实了二聚体化物桥联的结构。配合物是中心对称的,围绕每个Rh中心具有近似八面体的几何形状。化物桥是不对称的,Rh–(μ-I)反式为乙酰基的时间比Rh–(μ-I)反式更长。到化物末端。在配位溶剂中,3a形成单核络合物[Rh(CO)(sol)2(COMe)I 2 ](sol = MeCN,MeOH)。配合物3a与吡啶反应生成[Rh(CO)(py)(COMe)I 2 ] 2和[Rh(CO)(py)2(COMe)I 2 ],并与二膦螯合生成[Rh(Ph 2 P) (CH 2)n PPh 2)(COMe)I 2 ](n = 2,3,4)。将MeI添加到[Ir(CO)2(NCMe)I]比[Ir(CO)2
  • Kinetic and spectroscopic studies of the carbonylation of methanol with an iodide-promoted iridium catalyst
    作者:Denis Forster
    DOI:10.1039/dt9790001639
    日期:——
    proposed for the carbonylation of methanol in the presence of iridium halides as the catalyst precursor and methyl iodide as promoter. The scheme is based on a combination of kinetic observations, in situ spectral studies of reactions, and studies of the chemistry of the observed intermediates. It is shown that there are two principal catalytic cycles for the methanol carbonylation, one involving neutral
    提出了在卤化作为催化剂前体,甲基作为促进剂的条件下甲醇羰基化的机理解释。该方案基于原位动力学观察的组合反应的光谱研究以及所观察到的中间体的化学研究。结果表明,甲醇羰基化有两个主要的催化循环,一个涉及中性羰基络合物,另一个涉及阴离子类。此外,在许多条件下都可以观察到竞争性的煤气变换反应。主要的催化循环受离子平和化氢浓度影响。这两个因素受变量的影响,例如甲醇碘甲烷的浓度以及盐的添加物和温度。反应的动力学依赖性极大地取决于占主导地位的催化循环。
  • Promotion of Iridium-Catalyzed Methanol Carbonylation:  Mechanistic Studies of the Cativa Process
    作者:Anthony Haynes、Peter M. Maitlis、George E. Morris、Glenn J. Sunley、Harry Adams、Peter W. Badger、Craig M. Bowers、David B. Cook、Paul I. P. Elliott、Talit Ghaffar、Helena Green、Tim R. Griffin、Marc Payne、Jean M. Pearson、Michael J. Taylor、Paul W. Vickers、Rob J. Watt
    DOI:10.1021/ja039464y
    日期:2004.3.1
    The iridium/iodide-catalyzed carbonylation of methanol to acetic acid is promoted by carbonyl complexes of W, Re, Ru, and Os and simple iodides of Zn, Cd, Hg, Ga, and In. Iodide salts (Lil and Bu4NI) are catalyst poisons. In situ IR spectroscopy shows that the catalyst resting state (at H2O levels greater than or equal to 5% w/w) is fac,cis-[Ir(CO)(2)I3Me](-), 2. The stoichiometric carbonylation of 2 into [Ir(CO)(2)I-3(COMe)]-, 6, is accelerated by substoichiometric amounts of neutral promoter species (e.g., [Ru(CO)(3)I-2)(2), [Ru(CO)(2)I-2](n), InI3, GaI3, and ZnI2). The rate increase is approximately proportional to promoter concentration for promoter: Ir ratios of 0-0.2. By contrast anionic Ru complexes (e.g., [Ru(CO)(3)I-3](-), [Ru(CO)(2)I-4](2-)) do not promote carbonylation of 2 and BU4NI is an inhibitor. Mechanistic studies indicate that the promoters accelerate carbonylation of 2 by abstracting an iodide ligand from the Ir center, allowing coordination of CO to give [Ir(CO)(3)I2Me], 4, identified by high-pressure IR and NMR spectroscopy. Migratory CO insertion is ca. 700 times faster for 4 than for 2 (85 degreesC, PhCI), representing a lowering of DeltaG(+/-) by 20 kJ mol(-1). Ab initio calculations support a more facile methyl migration in 4, the principal factor being decreased pi-back-donation to the carbonyl ligands compared to 2. The fac,cis isomer of [Ir(CO)(2)I-3(COMe)](-), 6a (as its Ph4As+ salt), was characterized by X-ray crystallography. A catalytic mechanism is proposed in which the promoter [M(CO)(m)I-n] (M = Ru, In; m = 3, 0; n = 2, 3) binds I- to form [M(CO)(m)In+1]-H3O+ and catalyzes the reaction HI(aq) + MeOAc --> Mel + HOAc. This moderates the concentration of HI(aq) and so facilitates catalytic turnover via neutral 4.
查看更多