Hepatic. Cilostazol is extensively metabolized by hepatic cytochrome P-450 enzymes, mainly 3A4, and, to a lesser extent, 2C19, with metabolites largely excreted in urine. Two metabolites are active, with one metabolite appearing to account for at least 50% of the pharmacologic (PDE III inhibition) activity after administration of cilostazol.
Following oral administration of 100 mg radiolabeled cilostazol, 56% of the total analytes in plasma was cilostazol, 15% was 3,4-dehydro-cilostazol (4-7 times as active as cilostazol), and 4% was 4'-trans-hydroxy-cilostazol (20% as active as cilostazol).
Cilostazol is eliminated predominantly by metabolism and subsequent urinary excretion of metabolites. Based on in vitro studies, the primary isoenzymes involved in cilostazol's metabolism are CYP3A4 and, to a lesser extent, CYP2C19. The enzyme responsible for metabolism of 3,4-dehydro-cilostazol, the most active of the metabolites, is unknown.
Cilostazol is extensively metabolized by hepatic cytochrome P-450 enzymes, mainly 3A4, and, to a lesser extent, 2C19, with metabolites largely excreted in urine. Two metabolites are active, with one metabolite appearing to account for at least 50% of the pharmacologic (PDE III inhibition) activity after administration of Pletal.
The pharmacokinetics of cilostazol was investigated after oral and intravenous administration in both male and female rats. After oral administration, area under serum concentration-time curve (AUC) was about 35-fold higher in female rats than in male rats, and absolute bioavailability was about 5.8-fold higher in female rats than in male rats. Total body clearance (CL(total)) for female rats was around one-sixth of that for male rats. In vivo hepatic clearance (CL(h)) calculated based on isolated liver perfusion studies was even higher than or around 90% of the in vivo CL(total) of cilostazol for female and male rats, respectively, indicating that cilostazol is mainly eliminated by the liver in both male and female rats. In vitro metabolism studies utilizing hepatic microsomes and recombinant cytochrome (CYP) isoforms clearly indicated that major metabolites of cilostazol were generated extensively with hepatic microsomes of male rats and that male-predominant CYP3A2 and male-specific CYP2C11 were mainly responsible for the hepatic metabolism of cilostazol. Therefore, the great sex differences in the pharmacokinetics of cilostazol were mainly attributed to the large difference in hepatic metabolism. Our experimental results also suggested that the substantial metabolism of cilostazol in the small intestine and its possible saturation would be responsible for dose-dependent bioavailability in both male and female rats.
IDENTIFICATION AND USE: Cilostazol forms colorless, needle-like crystals. As the oral drug Pletal, it is indicated for the reduction of symptoms of intermittent claudication. HUMAN EXPOSURE AND TOXICITY: The signs and symptoms of an acute overdose may include severe headache, diarrhea, hypotension, tachycardia, and possibly cardiac arrhythmias. ANIMAL STUDIES: No cardiovascular lesions were seen in rats following 5 or 13 weeks of administration of cilostazol at doses up to 1500 mg/kg/day. At this dose, systemic exposures (AUCs) to unbound cilostazol were only about 1.5 and 5 times (male and female rats, respectively) the exposure seen in humans at the maximum recommended human dose (MRHD). Repeated oral administration of cilostazol to dogs produced cardiovascular lesions that included endocardial hemorrhage, hemosiderin deposition and fibrosis in the left ventricle, hemorrhage in the right atrial wall, hemorrhage and necrosis of the smooth muscle in the wall of the coronary artery, intimal thickening of the coronary artery, and coronary arteritis and periarteritis. At the lowest dose associated with cardiovascular lesions in the 52-week study, AUC to unbound cilostazol was less than that seen in humans at the MRHD of 100 mg twice daily. In a rat developmental toxicity study, oral administration of 1000 mg cilostazol/kg/day was associated with decreased fetal weights, and increased incidences of cardiovascular, renal, and skeletal anomalies (ventricular septal, aortic arch and subclavian artery abnormalities, renal pelvic dilation, 14th rib, and retarded ossification). Cilostazol tested negative in bacterial gene mutation, bacterial DNA repair, mammalian cell gene mutation, and mouse in vivo bone marrow chromosomal aberration assays. It was, however, associated with a significant increase in chromosomal aberrations in the in vitro Chinese Hamster Ovary Cell assay. Dietary administration of cilostazol to rats and mice for up to 104 weeks revealed no evidence of carcinogenic potential. The maximum doses administered in both rat and mouse studies were, on a systemic exposure basis, less than the human exposure at the MRHD of the drug.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
肝毒性
在 cilostazol 疗法多项大型前瞻性试验的出版物中,未提供治疗期间血清 ALT 升高的发生率。此外,没有报告出现临床明显的急性肝损伤的实例。自从它获得批准并广泛使用以来,没有发表的报道称 cilostazol 导致了肝毒性。尽管如此,当前产品标签提到已经向赞助商报告了血清酶升高和肝炎的情况。在 cilostazol 疗法期间,肝脏测试异常的开始时间、临床模式和过程尚未有报道。
In publications of the multiple, large prospective trials of cilostazol therapy, rates of serum ALT elevations during therapy were not provided. Furthermore, there were no reported instances of clinically apparent acute liver injury. Since its approval and wide scale use, there have been no published reports of hepatotoxicity attributed to cilostazol. Nevertheless, the current product label mentions that instances of serum enzyme elevations and hepatitis have been reported to the sponsor. The time of onset, clinical pattern and course of liver test abnormalities during cilostazol therapy have not been reported.
Cilostazol is absorbed after oral administration. A high fat meal increases absorption, with an approximately 90% increase in Cmax and a 25% increase in AUC. Absolute bioavailability is not known.
Cilostazol is extensively metabolized by hepatic cytochrome P-450 enzymes, mainly 3A4, and, to a lesser extent, 2C19, with metabolites largely excreted in urine. Cilostazol is eliminated predominately by metabolism and subsequent urinary excretion of metabolites. The primary route of elimination was via the urine (74%), with the remainder excreted in feces (20%). No measurable amount of unchanged cilostazol was excreted in the urine, and less than 2% of the dose was excreted as 3,4-dehydro-cilostazol. About 30% of the dose was excreted in urine as 4'-trans-hydroxy-cilostazol.
Following oral administration of a single 100-mg dose of cilostazol with a high-fat meal, peak plasma cilostazol concentrations and area under the plasma concentration-time curve (AUC) increased by approximately 90 and 25%, respectively.
Pletal is absorbed after oral administration. A high fat meal increases absorption, with an approximately 90% increase in Cmax and a 25% increase in AUC. Absolute bioavailability is not known.