... Salinomycin (SAL), a broad spectrum antibiotic and a coccidiostat has been found to counter tumour resistance and kill cancer stem cells with better efficacy than the existing chemotherapeutic agents; paclitaxel and doxorubicin. This refocused its importance for treatment of human cancers. In this study, we studied the in vitro drug metabolism and pharmacokinetic parameters of SAL. SAL undergoes rapid metabolism in liver microsomes and has a high intrinsic clearance. SAL metabolism is mainly mediated by CYP enzymes; CYP3A4 the major enzyme metabolising SAL. The percent plasma protein binding of SAL in human was significantly lower as compared to mouse and rat plasma. CYP inhibition was carried out by chemical inhibition and recombinant enzyme studies. SAL was found to be a moderate inhibitor of CYP2D6 as well as CYP3A4. As CYP3A4 was the major enzyme responsible for metabolism of SAL, in vivo pharmacokinetic study in rats was done to check the effect of concomitant administration of Ketoconazole (KTC) on SAL pharmacokinetics. KTC, being a selective CYP3A4 inhibitor increased the systemic exposure of SAL significantly to 7-fold in AUC0-a and 3-fold increase in Cmax of SAL in rats with concomitant KTC administration.
Hepatocellular carcinoma (HCC) is one of the few cancers in which a continuous increase in incidence has been observed over several years. Drug resistance is a major problem in the treatment of HCC. In the present study, we used salinomycin (Sal) and 5-fluorouracil (5-FU) combination therapy on HCC cell lines Huh7, LM3 and SMMC-7721 and nude mice subcutaneously tumor model to study whether Sal could increase the sensitivity of hepatoma cells to the traditional chemotherapeutic agent such as 5-FU. The combination of Sal and 5-FU resulted in a synergistic antitumor effect against liver tumors both in vitro and in vivo. Sal reversed the 5-FU-induced increase in CD133(+) EPCAM(+) cells, epithelial-mesenchymal transition and activation of the Wnt/beta-catenin signaling pathway. The combination of Sal and 5-FU may provide us with a new approach to reverse drug resistant for the treatment of patients with HCC.
Chemotherapy for soft tissue sarcomas remains unsatisfactory due to their low chemosensitivity. Even the first line chemotherapeutic agent doxorubicin only yields a response rate of 18-29%. The antibiotic salinomycin, a potassium ionophore, has recently been shown to be a potent compound to deplete chemoresistant cells like cancer stem like cells (CSC) in adenocarcinomas. Here, we evaluated the effect of salinomycin on sarcoma cell lines, whereby salinomycin mono- and combination treatment with doxorubicin regimens were analyzed. To evaluate the effect of salinomycin on fibrosarcoma, rhabdomyosarcoma and liposarcoma cell lines, cells were drug exposed in single and combined treatments, respectively. The effects of the corresponding treatments were monitored by cell viability assays, cell cycle analysis, caspase 3/7 and 9 activity assays. Further we analyzed NF-kappaB activity; p53, p21 and PUMA transcription levels, together with p53 expression and serine 15 phosphorylation. The combination of salinomycin with doxorubicin enhanced caspase activation and increased the sub-G1 fraction. The combined treatment yielded higher NF-kappaB activity, and p53, p21 and PUMA transcription, whereas the salinomycin monotreatment did not cause any significant changes. Salinomycin increases the chemosensitivity of sarcoma cell lines - even at sub-lethal concentrations - to the cytostatic drug doxorubicin. These findings support a strategy to decrease the doxorubicin concentration in combination with salinomycin in order to reduce toxic side effects.
A factorial design (2 by 3) was used to evaluate the interaction between aflatoxin (0, 2.5, & 5 mg per kg) & salinomycin (1, 60 g per ton (909 kg)). There were four replicates of 10 chicks per treatment. ... No significant interaction was observed between aflatoxin & salinomycin on any of the parameters measured.
This study was aimed to investigate the effect of salinomycin combined with vincristine on the proliferation and apoptosis of Jurkat cells and its possible mechanisms. The proliferation of Jurkat cells was examined by CKK-8 assay. Flow cytometry was used to assess cellular apoptosis. Levels of BCL-2, caspase-3, and caspase- 8 were measured by Western blot. The salinomycin or vincristine, either alone or in combination, inhibited the proliferation of Jurkat cells in a dose-dependent manner. Salinomycin combined with vincristine produced more obvious inhibition of cell proliferation than either compound used alone (P<0.05). Western blot analysis showed that the combined use of Sal and VCR reduced the expression of BCL-2 protein, and increased expression of caspase 3 and caspase 8 protein, more significantly. Furthermore, combination of Sal and VCR synergistally promoted apoptosis of the Jurkat cells (P<0.05). The combination of salinomycin and vincristine synergistically inhibits proliferation and promotes apoptosis of T-cell acute lymphoblastic leukemia Jurkat cells.