摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

cis-[Ru(H2O)4(ethylene)2](2+) | 148161-28-8

中文名称
——
中文别名
——
英文名称
cis-[Ru(H2O)4(ethylene)2](2+)
英文别名
——
cis-[Ru(H2O)4(ethylene)2](2+)化学式
CAS
148161-28-8
化学式
C4H16O4Ru
mdl
——
分子量
229.239
InChiKey
HEFVIFIVERPAGE-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为产物:
    描述:
    参考文献:
    名称:
    水性钌 (II) 化学方面
    摘要:
    自从 80 年代初发表了 [Ru(H2O)(6)](tos)(2) 的第一个简便合成方法以来,描述了几种 Ru-II 水性无机和有机金属配合物,表明人们对这种由于在催化和医学方面的潜在应用而产生的化合物。了解是什么控制了 Ru-II 中心的第一个配位球中配体的反应性。我们讨论了它的溶液行为,从最简单的水性物质 [Ru(H2O)(6)](2-) 开始,并通过选定的例子逐渐复杂化。此外,我们提出了具有两个目标的可变压力测量,以确定机械分配的激活量。并通过增加气体分子的溶解度来改变平衡。
    DOI:
    10.1002/1522-2675(20011017)84:10<2854::aid-hlca2854>3.0.co;2-e
点击查看最新优质反应信息

文献信息

  • Mechanism of Complex Formation of Ruthenium(II) Aquacomplexes with H<sub>2</sub>CCH<sub>2</sub>, MeCN, Me<sub>2</sub>SO, and CO:  Metal−Water Bond Rupture as Rate-Determining Step
    作者:Nicolas Aebischer、Raphaël Churlaud、Lilian Dolci、Urban Frey、André E. Merbach
    DOI:10.1021/ic980628z
    日期:1998.11.1
    The reaction [Ru(H2O)(6)](2+) + L -->(kf) [RU(H2O)(5)L](2+) + H2O was followed as a function of temperature and ethylene concentration (up to 40 MPa) using a homemade high gas pressure NMR microreactor. The reaction was first order in H2C=CH2 with 10(3)kf(298)/kg mol(-1) s(-1) = 1.22 +/- 0.06, Delta H(f)double dagger/kJ mol(-1) = 76.9 +/- 2, and Delta S(f)double dagger/J K-1 mol(-1) = -42.9 +/- 8. These results confirm previous works on mono-complex formation reactions where an Id mechanism was proposed. The reaction [Ru(H2O)5L]2+ + *L reversible arrow(kL) [Ru(H2O)(5)*L](2+) + L of exchange of L on the mono-complex was followed for L = H2C=CH2 (10(3)k(L)/kg mol(-1) s(-1) = 10.8 at 298.2 K), Me2SO (0.35 at 278.5 K), and CO (0.052 at 298.3 K); the rate-determining step is the rupture of the Ru-(HOax)-O-2 bond with trans-Ru(H2O)(4)L-2](2+) as reaction intermediate. Due to the trans effect exercised by these strong pi-accepting ligands, the ligand exchange reaction is faster than the mono-complex formation reactions. The cis-bis-complex formation reaction, [Ru(H2O)(5)L](2+) + L -->(kcis) cis-[Ru(H2O)(4)L-2](2+) + H2O, was also investigated for L = MeCN (10(3)k(cis)/kg mol(-1) s(-1) = 0.111 at 298.1 K), Me2SO (0.019 at 321.6 K), and H2C=CH2 (0.007 at 298.1 K, Delta H(cis)double dagger/kJ mol(-1) = 129.9 +/- 4, and Delta S(cis)double dagger/J K-1 mol(-1) = +92.0 +/- 11); here, too, the Ru-H2Oeq bond breaking is rate determining, but due to the decrease of the lability of water molecules cis to pi-accepting ligands, these reactions are much slower. In the case of MeCN, the reaction scheme includes the formation of the trans-bis-complex and of the mer-triscomplex. As a general rule, the rate of these complex formation reactions,of dissociative nature, can be predicted from the oxygen-17 determined water exchange rates.
查看更多