Efficient Zirconocene-Coupling of Silicon-Substituted Diynes to Polymers and Macrocycles
作者:Shane S. H. Mao、Feng-Quan Liu、T. Don Tilley
DOI:10.1021/ja973180u
日期:1998.2.1
The zirconocene-coupling of diynes with internal silicon substituents, MeC=CMe2SiArSiMe2C=CMe (1: Ar = 1,4-C6H4; 2: Ar = 1,3-C6H4; 3: Ar = 4,4'-C6H4C6H4), generates regiospecific polymers containing zirconacyclopentadiene in the main chain (5-7). These organometallic polymers hydrolyze cleanly to butadienediyl polymers of the type [Me2SiArSiMe2CH=CMeCMe=CH](n) (11-13), and polymer 5 reacts with iodine to give the iodine-containing polymer [1,4-Me2SiC6H4SiMe2C(I)=CMeCMe=C(I)](n) (14). The organometallic polymers undergo facile and high-yield degradations to macrocycles under mild conditions (refluxing tetrahydrofuran solution). The size and shape of the resulting macrocycles depend upon the nature of the diyne spacer group. Thus, polymers 5 and 7 containing parallel diyne units convert to the trimeric macrocycles [Me2SiArSiMe2C4Me2ZrCp2](3) (15: Ar = 1,4-C6H4; 24: Ar = 4,4'-C6H4C6H4), while polymer 6 gives the dimeric macrocycle [1,3-Me2SiC6H4SiMe2C4Me2ZrCp2](2) (18). The dimeric macrocycle [Me2SiC6H4-SiMe2C6H4SiMe2C4Me2ZrCp2](2) (20) was obtained directly from the zirconocene coupling of Me2Si[(1,4-C6H4)SiMe2(C=CMe)](2) (4) by heating the reaction mixture to reflux. In. similar manner, the diyne Me2Si(C=CMe)(2) was converted in high yield to the hexameric macrocycle [Me2SiC4Me2ZrCp2](6) (22). The macrocycles 15, [1,4-Me2SiC6H4SiMe2C4Me2H2](3) (16), and 18 were characterized by single-crystal X-ray crystallography. Molecules of 15 adopt a nearly planar Cg macrocyclic structure with a cavity described by an average transannular Si ... Si distance of 13.2 Angstrom, while the hydrolyzed macrocycle 16 has a chair conformation. This conformation change results from conversion of cis diene groups in the zirconacyclopendiene fragments to trans diene groups in 16. The high-yield formation of macrocycles apparently results from the reversible nature of the alkyne-coupling reaction, which allows for a low-energy pathway to the smallest macrocycle possessing minimal ring strain.