摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,2-bis(5-trimethylstannylthiophen-2-yl)ethane

中文名称
——
中文别名
——
英文名称
1,2-bis(5-trimethylstannylthiophen-2-yl)ethane
英文别名
1,2-Bis(5-(trimethylstannyl)thiophen-2-yl)ethane;trimethyl-[5-[2-(5-trimethylstannylthiophen-2-yl)ethyl]thiophen-2-yl]stannane
1,2-bis(5-trimethylstannylthiophen-2-yl)ethane化学式
CAS
——
化学式
C16H26S2Sn2
mdl
——
分子量
519.934
InChiKey
WCHYSNDRWAMSCS-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.69
  • 重原子数:
    20
  • 可旋转键数:
    5
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    56.5
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为产物:
    参考文献:
    名称:
    Complementary Semiconducting Polymer Blends: The Influence of Conjugation-Break Spacer Length in Matrix Polymers
    摘要:
    The concept of complementary semiconducting polymer blends (c-SPBs) for efficient charge transport was recently proposed and established by our group. In this study, we aim to reveal the influence of the length of conjugation-break spacers (CBSs) on charge transport properties of the matrix polymers and their corresponding complementary polymer blends. A series of 11 DPP-based semiconducting polymers DPP-Cm (m = 2-12) that incorporate CBSs of 2-12 methylene units along the polymer backbones were prepared and characterized. The UV vis spectra and the ultraviolet photoelectron spectroscopy (UPS) measurements show that the CBS length has marginal influence on the polymer absorption spectra, energy levels, and band gaps. It also has little impact on polymer decomposition temperatures. However, the CBS length has a profound influence on polymer phase transition and the heat of fusion. As for the melt transitions, an odd even effect is observed from DPP-C2 to DPP-C7, in which polymers with even-numbered CBSs show higher melting points than their adjacent odd-numbered derivatives. The trend is opposite for heat of fusion. The polymers with odd-numbered CBSs exhibit larger heat of fusion, indicating higher ordering and crystallinity. The odd even effect is also found in surface morphologies of the polymers by atomic force microscopy (AFM). The polymers with the even CBSs have a more interconnected feature that appear more fibrillar than the polymers with the odd linkages. As far as charge carrier mobility is concerned, the average number drops from 0.023 cm2 V-1 s(-1) to 7.9 X 10(-6) cm(2) V-1 s(-1) as the CBS moves from C2 to C12. It is intriguing to observe that even-numbered polymers outperform the adjacent odd-numbered polymers, despite the fact that the latter show higher ordering and crystallinity in thin films. When these polymers are mixed with fully conjugated DPP-CO (2 wt %, designated as tie chain polymer), the obtained cSPBs witness a dramatic increase (2-4 orders of magnitude) in charge carrier mobility. Interestingly, the odd even effect is not found for charge transport in the c-SPBs. This work reveals that the length of CBSs plays a significant role in charge transport properties of the matrix polymers and reconfirms that efficient charge transport properties of the c-SPB result from the interactions between matrix polymers and tie chain polymers. This begins to provide guidelines as to what spacer lengths may be utilized to offer the best balance between processing and charge transport properties.
    DOI:
    10.1021/acs.macromol.6b00050
点击查看最新优质反应信息

文献信息

  • Heavily n-Dopable π-Conjugated Redox Polymers with Ultrafast Energy Storage Capability
    作者:Yanliang Liang、Zhihua Chen、Yan Jing、Yaoguang Rong、Antonio Facchetti、Yan Yao
    DOI:10.1021/jacs.5b02290
    日期:2015.4.22
    We report here the first successful demonstration of a pi-conjugated redox polymer simultaneously featuring a pi-conjugated backbone and integrated redox sites, which can be stably and reversibly n-doped to a high doping level of 2.0 with significantly enhanced electronic conductivity. The properties of such a heavily n-dopable polymer, poly[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)), were compared vis-a-vis to those of the corresponding backbone-insulated poly[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5'-[2,2'-(1,2-ethanediyl)bithiophene]} (P(NDI2OD-TET)). When evaluated as a charge storage material for rechargeable Li batteries, P(NDI2OD-T2) delivers 95% of its theoretical capacity at a high rate of 100C (72 s per charge-discharge cycle) under practical measurement conditions as well as 96% capacity retention after 3000 cycles of deep discharge-charge. Electrochemical, impedance, and charge-transport measurements unambiguously demonstrate that the ultrafast electrode kinetics of P(NDI2OD-T2) are attributed to the high electronic conductivity of the polymer in the heavily n-doped state.
  • Complementary Semiconducting Polymer Blends: The Influence of Conjugation-Break Spacer Length in Matrix Polymers
    作者:Xikang Zhao、Yan Zhao、Qu Ge、Kamal Butrouna、Ying Diao、Kenneth R. Graham、Jianguo Mei
    DOI:10.1021/acs.macromol.6b00050
    日期:2016.4.12
    The concept of complementary semiconducting polymer blends (c-SPBs) for efficient charge transport was recently proposed and established by our group. In this study, we aim to reveal the influence of the length of conjugation-break spacers (CBSs) on charge transport properties of the matrix polymers and their corresponding complementary polymer blends. A series of 11 DPP-based semiconducting polymers DPP-Cm (m = 2-12) that incorporate CBSs of 2-12 methylene units along the polymer backbones were prepared and characterized. The UV vis spectra and the ultraviolet photoelectron spectroscopy (UPS) measurements show that the CBS length has marginal influence on the polymer absorption spectra, energy levels, and band gaps. It also has little impact on polymer decomposition temperatures. However, the CBS length has a profound influence on polymer phase transition and the heat of fusion. As for the melt transitions, an odd even effect is observed from DPP-C2 to DPP-C7, in which polymers with even-numbered CBSs show higher melting points than their adjacent odd-numbered derivatives. The trend is opposite for heat of fusion. The polymers with odd-numbered CBSs exhibit larger heat of fusion, indicating higher ordering and crystallinity. The odd even effect is also found in surface morphologies of the polymers by atomic force microscopy (AFM). The polymers with the even CBSs have a more interconnected feature that appear more fibrillar than the polymers with the odd linkages. As far as charge carrier mobility is concerned, the average number drops from 0.023 cm2 V-1 s(-1) to 7.9 X 10(-6) cm(2) V-1 s(-1) as the CBS moves from C2 to C12. It is intriguing to observe that even-numbered polymers outperform the adjacent odd-numbered polymers, despite the fact that the latter show higher ordering and crystallinity in thin films. When these polymers are mixed with fully conjugated DPP-CO (2 wt %, designated as tie chain polymer), the obtained cSPBs witness a dramatic increase (2-4 orders of magnitude) in charge carrier mobility. Interestingly, the odd even effect is not found for charge transport in the c-SPBs. This work reveals that the length of CBSs plays a significant role in charge transport properties of the matrix polymers and reconfirms that efficient charge transport properties of the c-SPB result from the interactions between matrix polymers and tie chain polymers. This begins to provide guidelines as to what spacer lengths may be utilized to offer the best balance between processing and charge transport properties.
查看更多

同类化合物

阿罗洛尔 阿替卡因 阿克兰酯 锡烷,(5-己基-2-噻吩基)三甲基- 邻氨基噻吩(2盐酸) 辛基5-(1,3-二氧戊环-2-基)-2-噻吩羧酸酯 辛基4,6-二溴噻吩并[3,4-b]噻吩-2-羧酸酯 辛基2-甲基异巴豆酸酯 血管紧张素IIAT2受体激动剂 葡聚糖凝胶LH-20 苯螨噻 苯并[c]噻吩-1-羧酸,5-溴-4,5,6,7-四氢-3-(甲硫基)-4-羰基-,乙基酯 苯并[b]噻吩-2-胺 苯并[b]噻吩-2-胺 苯基-[5-(4,4,5,5-四甲基-[1,3,2]二氧杂硼烷-2-基)-噻吩-2-基亚甲基]-胺 苯基-(5-氯噻吩-2-基)甲醇 苯乙酸,-α--[(1-羰基-2-丙烯-1-基)氨基]- 苯乙酰胺,3,5-二氨基-a-羟基-2,4,6-三碘- 苯乙脒,2,6-二氯-a-羟基- 腈氨噻唑 聚(3-丁基噻吩-2,5-二基),REGIOREGULAR 硝呋肼 硅烷,(3-己基-2,5-噻吩二基)二[三甲基- 硅噻菌胺 盐酸阿罗洛尔 盐酸阿罗洛尔 盐酸多佐胺 甲酮,[5-(1-环己烯-1-基)-4-(2-噻嗯基)-1H-吡咯-3-基]-2-噻嗯基- 甲基5-甲酰基-4-甲基-2-噻吩羧酸酯 甲基5-乙氧基-3-羟基-2-噻吩羧酸酯 甲基5-乙基-3-肼基-2-噻吩羧酸酯 甲基5-(氯甲酰基)-2-噻吩羧酸酯 甲基5-(氯乙酰基)-2-噻吩羧酸酯 甲基5-(氨基甲基)噻吩-2-羧酸酯 甲基5-(4-甲氧基苯基)-2-噻吩羧酸酯 甲基5-(4-甲基苯基)-2-噻吩羧酸酯 甲基5-(1,3-二氧戊环-2-基)-2-噻吩羧酸酯 甲基4-硝基-2-噻吩羧酸酯 甲基4-氰基-5-(4,6-二氨基吡啶-2-基)偶氮-3-甲基噻吩-2-羧酸酯 甲基4-氨基-5-(甲硫基)-2-噻吩羧酸酯 甲基4-{[(2E)-2-(4-氰基苯亚甲基)肼基]磺酰}噻吩-3-羧酸酯 甲基4-(氯甲酰基)-3-噻吩羧酸酯 甲基4-(氨基磺酰基氨基)-3-噻吩羧酸酯 甲基3-甲酰氨基-4-甲基-2-噻吩羧酸酯 甲基3-氨基-5-异丙基-2-噻吩羧酸酯 甲基3-氨基-5-(4-溴苯基)-2-噻吩羧酸酯 甲基3-氨基-4-苯基-5-(三氟甲基)-2-噻吩羧酸酯 甲基3-氨基-4-氰基-5-甲基-2-噻吩羧酸酯 甲基3-氨基-4-丙基-2-噻吩羧酸酯 甲基3-[[(4-甲氧基苯基)亚甲基氨基]氨基磺酰基]噻吩-2-羧酸酯