摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-苯并噻吩硼酸 | 845872-49-3

中文名称
5-苯并噻吩硼酸
中文别名
——
英文名称
benzo[b]thiophen-5-ylboronic acid
英文别名
5-Benzothiopheneboronic acid;1-benzothiophen-5-ylboronic acid
5-苯并噻吩硼酸化学式
CAS
845872-49-3
化学式
C8H7BO2S
mdl
MFCD06740319
分子量
178.019
InChiKey
LVRZWFSXTOTWTH-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    390.2±34.0 °C(Predicted)
  • 密度:
    1.35±0.1 g/cm3(Predicted)
  • 溶解度:
    可溶于DMSO(少许)、甲醇(少许)

计算性质

  • 辛醇/水分配系数(LogP):
    2.39
  • 重原子数:
    12
  • 可旋转键数:
    1
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    68.7
  • 氢给体数:
    2
  • 氢受体数:
    3

安全信息

  • 危险性防范说明:
    P261,P305+P351+P338
  • 危险性描述:
    H302,H315,H319,H335
  • 储存条件:
    存储条件:密封、干燥且避光,在2-8°C下保存。

SDS

SDS:ae87b353fa2b2a39e9a958a66c3650c7
查看
Material Safety Data Sheet

Section 1. Identification of the substance
Product Name: Benzothiophene-5-boronic acid
Synonyms:

Section 2. Hazards identification
Harmful by inhalation, in contact with skin, and if swallowed.

Section 3. Composition/information on ingredients.
Ingredient name: Benzothiophene-5-boronic acid
CAS number: 845872-49-3

Section 4. First aid measures
Skin contact: Immediately wash skin with copious amounts of water for at least 15 minutes while removing
contaminated clothing and shoes. If irritation persists, seek medical attention.
Eye contact: Immediately wash skin with copious amounts of water for at least 15 minutes. Assure adequate
flushing of the eyes by separating the eyelids with fingers. If irritation persists, seek medical
attention.
Inhalation: Remove to fresh air. In severe cases or if symptoms persist, seek medical attention.
Ingestion: Wash out mouth with copious amounts of water for at least 15 minutes. Seek medical attention.

Section 5. Fire fighting measures
In the event of a fire involving this material, alone or in combination with other materials, use dry
powder or carbon dioxide extinguishers. Protective clothing and self-contained breathing apparatus
should be worn.

Section 6. Accidental release measures
Personal precautions: Wear suitable personal protective equipment which performs satisfactorily and meets local/state/national
standards.
Respiratory precaution: Wear approved mask/respirator
Hand precaution: Wear suitable gloves/gauntlets
Skin protection: Wear suitable protective clothing
Eye protection: Wear suitable eye protection
Methods for cleaning up: Mix with sand or similar inert absorbent material, sweep up and keep in a tightly closed container
for disposal. See section 12.
Environmental precautions: Do not allow material to enter drains or water courses.

Section 7. Handling and storage
Handling: This product should be handled only by, or under the close supervision of, those properly qualified
in the handling and use of potentially hazardous chemicals, who should take into account the fire,
health and chemical hazard data given on this sheet.
Store in closed vessels, refrigerated.
Storage:

Section 8. Exposure Controls / Personal protection
Engineering Controls: Use only in a chemical fume hood.
Personal protective equipment: Wear laboratory clothing, chemical-resistant gloves and safety goggles.
General hydiene measures: Wash thoroughly after handling. Wash contaminated clothing before reuse.

Section 9. Physical and chemical properties
Appearance: Not specified
Boiling point: No data
No data
Melting point:
Flash point: No data
Density: No data
Molecular formula: C8H7BO2S
Molecular weight: 178.0

Section 10. Stability and reactivity
Conditions to avoid: Heat, flames and sparks.
Materials to avoid: Oxidizing agents.
Possible hazardous combustion products: Carbon monoxide, sulfur oxides.

Section 11. Toxicological information
No data.

Section 12. Ecological information
No data.

Section 13. Disposal consideration
Arrange disposal as special waste, by licensed disposal company, in consultation with local waste
disposal authority, in accordance with national and regional regulations.

Section 14. Transportation information
Non-harzardous for air and ground transportation.

Section 15. Regulatory information
No chemicals in this material are subject to the reporting requirements of SARA Title III, Section
302, or have known CAS numbers that exceed the threshold reporting levels established by SARA
Title III, Section 313.


SECTION 16 - ADDITIONAL INFORMATION
N/A

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    4-溴异喹啉5-苯并噻吩硼酸 在 palladium diacetate 、 sodium carbonate 、 三苯基膦 作用下, 以 乙二醇二甲醚 为溶剂, 生成 4-(1-Benzothiophen-5-yl)isoquinoline
    参考文献:
    名称:
    设计和合成4-杂芳基1,2,3,4-四氢异喹啉作为三重再摄取抑制剂。
    摘要:
    发现了一系列5-羟色胺转运蛋白(SERT),去甲肾上腺素转运蛋白(NET)和多巴胺转运蛋白(DAT)的4-双环杂芳基1,2,3,4-四氢异喹啉抑制剂。将讨论这些三重再摄取抑制剂(TRIs)的合成和构效关系(SAR)。化合物10i(AMR-2)是一种非常有效的SERT,NET和DAT抑制剂,在大鼠强迫游泳和小鼠尾巴悬液模型中分别以0.3和1 mg / kg(po)的最小有效剂量显示了功效。在这些测定中的有效剂量下,10i在大鼠和小鼠脑中的三个转运蛋白上均表现出明显的占用水平。对10i代谢的研究表明形成了重要的活性代谢产物化合物13。
    DOI:
    10.1021/ml500053b
  • 作为产物:
    参考文献:
    名称:
    Substituted Piperidines as Renin Inhibitors
    摘要:
    通式(I)中的化合物具有抑制肾素活性的性质,可用作药物。其中,取代基R1、R2、R3、R4、X、Z和n的含义如权利要求1中所述。
    公开号:
    US20090306064A1
点击查看最新优质反应信息

文献信息

  • Transition-Metal-Free Borylation of Aryl Bromide Using a Simple Diboron Source
    作者:Taeho Lim、Jeong Yup Ryoo、Min Su Han
    DOI:10.1021/acs.joc.0c01065
    日期:2020.8.21
    reaction of aryl bromides. Bis-boronic acid (BBA), was used, and the borylation reaction was performed using a simple procedure at a mild temperature. Under mild conditions, aryl bromides were converted to arylboronic acids directly without any deprotection steps and purified by conversion to trifluoroborate salts. The functional group tolerance was considerably high. The mechanism study suggested that
    在这项研究中,我们开发了一个简单的无过渡金属的芳基溴化物的无硼化反应。使用双硼酸(BBA),并通过简单的步骤在温和的温度下进行硼酸酯化反应。在温和的条件下,不进行任何脱保护步骤,将芳基溴化物直接转化为芳基硼酸,并通过转化为三氟硼酸盐进行纯化。功能组耐受性相当高。机理研究表明该硼酸酯化反应通过自由基途径进行。
  • Efficient Synthesis of 1,9-Substituted Benzo[<i>h</i>][1,6]naphthyridin-2(1<i>H</i>)-ones and Evaluation of their <i>Plasmodium falciparum</i> Gametocytocidal Activities
    作者:Hao Li、Wei Sun、Xiuli Huang、Xiao Lu、Paresma R. Patel、Myunghoon Kim、Meghan J. Orr、Richard M. Fisher、Takeshi Q Tanaka、John C. McKew、Anton Simeonov、Philip E. Sanderson、Wei Zheng、Kim C. Williamson、Wenwei Huang
    DOI:10.1021/acscombsci.7b00119
    日期:2017.12.11
    A novel three-component, two-step, one-pot nucleophilic aromatic substitution (SNAr)–intramolecular cyclization–Suzuki coupling reaction was developed for the synthesis of benzo[h][1,6]naphthyridin-2(1H)-ones (Torins). On the basis of the new efficiently convergent synthetic route, a library of Torin analogs was synthesized. The antimalarial activities of these compounds were evaluated against asexual
    为合成苯并[ h ] [1,6]萘啶-2(1 H),开发了一种新颖的三组分,两步,一锅亲核芳香取代(S N Ar)-分子内环化-Suzuki偶联反应。-一个(Torins)。在新的有效收敛的合成路线的基础上,合成了都灵类似物的文库。使用生长抑制测定法评估这些化合物对无性寄生虫的抗疟活性,并使用生存力测定法评估配子细胞。
  • Scalable, Metal- and Additive-Free, Photoinduced Borylation of Haloarenes and Quaternary Arylammonium Salts
    作者:Adelphe M. Mfuh、John D. Doyle、Bhuwan Chhetri、Hadi D. Arman、Oleg V. Larionov
    DOI:10.1021/jacs.6b01376
    日期:2016.3.9
    We report herein a simple, metal- and additive-free, photoinduced borylation of haloarenes, including electron-rich fluoroarenes, as well as arylammonium salts directly to boronic acids. This borylation method has a broad scope and functional group tolerance. We show that it can be further extended to boronic esters and carried out on gram scale as well as under flow conditions.
    我们在此报告了一种简单的、无金属和无添加剂的、光诱导的卤代芳烃硼化反应,包括富电子氟芳烃,以及芳基铵盐直接转化为硼酸。这种硼酸化方法具有广泛的范围和官能团耐受性。我们表明它可以进一步扩展到硼酸酯并在克级以及在流动条件下进行。
  • Nanoscale synthesis and affinity ranking
    作者:Nathan J. Gesmundo、Bérengère Sauvagnat、Patrick J. Curran、Matthew P. Richards、Christine L. Andrews、Peter J. Dandliker、Tim Cernak
    DOI:10.1038/s41586-018-0056-8
    日期:2018.5
    Most drugs are developed through iterative rounds of chemical synthesis and biochemical testing to optimize the affinity of a particular compound for a protein target of therapeutic interest. This process is challenging because candidate molecules must be selected from a chemical space of more than 1060 drug-like possibilities 1 , and a single reaction used to synthesize each molecule has more than 107 plausible permutations of catalysts, ligands, additives and other parameters 2 . The merger of a method for high-throughput chemical synthesis with a biochemical assay would facilitate the exploration of this enormous search space and streamline the hunt for new drugs and chemical probes. Miniaturized high-throughput chemical synthesis3–7 has enabled rapid evaluation of reaction space, but so far the merger of such syntheses with bioassays has been achieved with only low-density reaction arrays, which analyse only a handful of analogues prepared under a single reaction condition8–13. High-density chemical synthesis approaches that have been coupled to bioassays, including on-bead 14 , on-surface 15 , on-DNA 16 and mass-encoding technologies 17 , greatly reduce material requirements, but they require the covalent linkage of substrates to a potentially reactive support, must be performed under high dilution and must operate in a mixture format. These reaction attributes limit the application of transition-metal catalysts, which are easily poisoned by the many functional groups present in a complex mixture, and of transformations for which the kinetics require a high concentration of reactant. Here we couple high-throughput nanomole-scale synthesis with a label-free affinity-selection mass spectrometry bioassay. Each reaction is performed at a 0.1-molar concentration in a discrete well to enable transition-metal catalysis while consuming less than 0.05 milligrams of substrate per reaction. The affinity-selection mass spectrometry bioassay is then used to rank the affinity of the reaction products to target proteins, removing the need for time-intensive reaction purification. This method enables the primary synthesis and testing steps that are critical to the invention of protein inhibitors to be performed rapidly and with minimal consumption of starting materials. A system that combines nanoscale synthesis and affinity ranking enables high-throughput screening of reaction conditions and bioactivity for a given protein target, accelerating the process of drug discovery.
    大多数药物都是通过反复的化学合成和生化测试来开发,以优化特定化合物与治疗感兴趣的蛋白质靶点的亲和力。这一过程颇具挑战性,因为候选分子必须从超过10^60种类药物可能性的化学空间中选出,而用于合成每个分子的单一反应中催化剂、配体、添加剂和其他参数的合理排列组合超过10^7种。将高通量化学合成方法与生化分析方法相结合,将有助于探索这一巨大的搜索空间,并简化新型药物和化学探针的寻找过程。微型化高通量化学合成技术已经能够快速评估反应空间,但迄今为止,这种合成方法与生物分析方法的结合,仅限于低密度反应阵列,即在单一反应条件下仅分析少量类似物。高密度化学合成方法与生物分析方法相结合,包括使用珠子上、表面上、DNA上和质量编码等技术,大大减少了材料需求,但这些方法要求底物与潜在的反应性载体共价连接,必须在高度稀释的情况下进行,并且必须在混合物的形式下运作。这些反应特性限制了过渡金属催化剂的应用,因为过渡金属催化剂很容易受到复杂混合物中存在的多种官能团的毒害,而且对于动力学需要高浓度反应物的反应过程也不适用。本研究将高通量纳摩尔级合成与无标记的亲和选择质谱生物分析相结合,使得每个反应在0.1摩尔浓度的条件下进行,既可能实现过渡金属催化,又使得每个反应消耗的底物不足0.05毫克。然后,使用亲和选择质谱生物分析法对反应产物与靶蛋白的亲和力进行排序,省去了耗时的反应纯化步骤。该方法使得对蛋白质抑制剂发明至关重要的初级合成和测试步骤能够快速完成,且起始材料消耗最小。纳米级合成和亲和力排序相结合的系统可以实现对给定蛋白质靶点的反应条件和生物活性进行高通量筛选,从而加速药物发现过程。
  • Magnetic silica supported copper: a modular approach to aqueous Ullmann-type amination of aryl halides
    作者:R. B. Nasir Baig、Rajender S. Varma
    DOI:10.1039/c3ra45606d
    日期:——
    One-pot synthesis of a magnetic silica supported copper catalyst has been described via in situ generated magnetic silica (Fe3O4@SiO2); the catalyst can be used for the efficacious amination of aryl halides in aqueous medium under microwave irradiation.
    已经描述了一种通过原位生成的磁性硅胶(Fe3O4@SiO2)进行磁性硅胶支持的铜催化剂的单锅合成;该催化剂可用于在水相中微波辐照下高效氨化芳基卤化物。
查看更多

同类化合物