中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
1,1,3,3-四甲基异吲哚啉 | 1,1,3,3-tetramethylisoindoline | 82894-84-6 | C12H17N | 175.274 |
2-苄基-1,1,3,3-四甲基异吲哚啉 | 2-benzyl-1,1,3,3-tetramethylisoindoline | 82894-83-5 | C19H23N | 265.398 |
The reaction of 3-methylpentane and 2,4-dimethylpentane toward t-butoxy radicals has been investigated, in neat and benzene solutions, by using the radical trapping technique. Abstraction occurs principally from the tertiary and secondary C-H reaction sites of 3-methylpentane and the tertiary position of 2,4-dimethylpentane. The tertiary and in particular secondary C-H reaction sites of 2,4-dimethylpentane are shown to be considerably less susceptible towards t-butoxy radical facilitated abstraction compared with the equivalent reaction sites of 3-methylpentane. As a result, the latter is three times as reactive as 2,4-dimethylpentane as a neat hydrocarbon solution and seven times as reactive in a diluted mixture of benzene. Diferences in selectivity and rate of hydrogen abstraction, between the substrates, are interpreted in terms of non-bonding interactions retarding t-butoxy radicals from approaching sterically demanding C-H reaction sites. The selectivity from 3-methylpentane is solvent-insensitive whereas abstraction from 2,4-dimethylpentane is modified in benzene. Further, the rate of hydrogen abstraction, from either substrate, to t-butoxy radical β-scission is considerably smaller in benzene. Both observations are interpreted in terms of t-butoxy radical solvation by the aromatic solvent.
The radical-trapping technique employing 1,1,3,3-tetramethyl-1,3-dihydro-2H-isoindol-2-yloxyl (1) as a radical scavenger has been used to study the reaction of diphenylphosphinoyl (2) and dimethoxyphosphinoyl (3) radicals with vinyl acetate and acrylonitrile. The phosphorus- centred radicals were generated by hydrogen abstraction from diphenylphosphine oxide and dimethyl phosphite respectively. Diphenylphosphine oxide was approximately three times as reactive as dimethyl phosphite towards hydrogen abstraction by t- butoxyl radicals and four times as reactive as tetrahydrofuran (towards abstraction of an α-hydrogen). Diphenylphosphinoyl radicals were found to be relatively nucleophilic and, in competition experiments, reacted about an order of magnitude faster with acrylonitrile than with vinyl acetate. Dimethoxyphosphinoyl radicals were rather less nucleophilic and reacted only twice as fast with acrylonitrile as they did with vinyl acetate. In the presence of excess aminoxyl (1), both diphenylphosphinoyl and dimethoxyphosphinoyl radicals were efficiently scavenged to produce stable phosphinic and phosphate esters respectively. The rate of scavenging was close to diffusion-controlled (c. 1.8×109 1. mol-1 s-1).