摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Nicotinamid-mononucleotid | 75414-16-3

中文名称
——
中文别名
——
英文名称
Nicotinamid-mononucleotid
英文别名
β-Nicotinamid-mononucleotid;nicotinamide mononucleotide;beta-Nicotinamide ribose monophosphate;[(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate
Nicotinamid-mononucleotid化学式
CAS
75414-16-3
化学式
C11H16N2O8P
mdl
——
分子量
335.23
InChiKey
DAYLJWODMCOQEW-TURQNECASA-O
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 物理描述:
    Solid

计算性质

  • 辛醇/水分配系数(LogP):
    -3.4
  • 重原子数:
    22
  • 可旋转键数:
    5
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.45
  • 拓扑面积:
    163
  • 氢给体数:
    5
  • 氢受体数:
    8

反应信息

  • 作为反应物:
    描述:
    Nicotinamid-mononucleotid 生成 P1-(adenosine-5')-P4-(nicotinamide riboside-5')tetraphosphate
    参考文献:
    名称:
    Dinucleoside Polyphosphate NAD Analogs as Potential NMN Adenylyltransferase Inhibitors. Synthesis and Biological Evaluation
    摘要:
    Two dinucleoside polyphosphate NAD analogs, P-1-(adenosine-5')-P-3-(nicotinamide riboside-5')triphosphate (Np(3)A, 1) and P-1-(adenosine-5')-P-4-(nicotinamide riboside-5')tetraphosphate (Np(4)A, 2), were synthesized and tested as inhibitors of both microbial and human recombinant NMN adenylyltransferase. Compounds 1 and 2 proved to be selective inhibitors of microbial enzymes.
    DOI:
    10.1081/ncn-120022673
  • 作为产物:
    参考文献:
    名称:
    [EN] COMBINATION OF NICOTINAMIDE MONONUCLEOTIDE DERIVATIVES AND OTHER THERAPEUTIC AGENTS FOR USE IN THE TREATMENT OF CORONAVIRUS INFECTIONS AND COVID-19
    [FR] COMBINAISON DE DÉRIVÉS DE NICOTINAMIDE MONONUCLÉOTIDE ET D'AUTRES AGENTS THÉRAPEUTIQUES DESTINÉE À ÊTRE UTILISÉE DANS LE TRAITEMENT D'INFECTIONS À CORONAVIRUS ET DE LA COVID-19
    摘要:
    本公开涉及将雷米司韦和公式(I)或公式(la)的烟酰胺单核苷酸衍生物的组合物用于治疗和/或预防冠状病毒感染和/或由冠状病毒感染引起的呼吸和/或非呼吸并发症,以及包含相同的制药组合物和工具包。
    公开号:
    WO2022029275A1
  • 作为试剂:
    描述:
    柠檬醛 、 alkaline earth salt of/the/ methylsulfuric acid 在 葡萄糖Nicotinamid-mononucleotid 、 sodium chloride 作用下, 以 aq. phosphate buffer 为溶剂, 反应 24.0h, 生成 香茅醛
    参考文献:
    名称:
    设计用于生物催化的烟酰胺单核苷酸氧化还原辅因子系统。
    摘要:
    化学品的生物生产通常需要使用细胞辅助因子,例如烟酰胺腺嘌呤二核苷酸磷酸 (NADP+)。这些辅助因子在体外使用起来很昂贵并且在体内难以控制。我们展示了基于烟酰胺单核苷酸(NMN+)的非规范氧化还原辅因子系统的开发。该系统中的关键酶是一种经过计算设计的葡萄糖脱氢酶,根据明显的酶活性,其辅因子特异性可切换至 NMN+(而非 NADP+)。我们证明,该系统可用于在体外支持多种氧化还原化学反应,具有高总周转数(~39,000),引导大肠杆菌全细胞中的还原能力,特别是从葡萄糖到药物中间体左旋二酮,并维持高代谢中央碳代谢支持生长所需的通量。总体而言,这项工作证明了非经典辅因子在生物催化和代谢途径设计中的有效利用。
    DOI:
    10.1038/s41589-019-0402-7
点击查看最新优质反应信息

文献信息

  • Chain-Terminating and Clickable NAD<sup>+</sup>Analogues for Labeling the Target Proteins of ADP-Ribosyltransferases
    作者:Yan Wang、Daniel Rösner、Magdalena Grzywa、Andreas Marx
    DOI:10.1002/anie.201404431
    日期:2014.7.28
    of PAR. Herein, we report new NAD+ analogues that are efficiently processed by wild‐type ARTs and lead to chain termination owing to a lack of the required hydroxy group, thereby significantly reducing the complexity of the protein modification. Due to the presence of an alkyne group, these NAD+ analogues allow subsequent manipulations by click chemistry for labeling with dyes or affinity markers.
    ADP-核糖基转移酶(ART)使用NAD +作为底物,并通过将多个ADP-核糖单元转移到靶蛋白上形成聚(ADP-核糖),在DNA损伤反应和细胞周期调控等众多生物学过程中发挥重要作用。 (PAR)大小可变的链。努力确定PARylation的直接靶标以及特定的ADP核糖受体位点,都必须解决PAR的复杂性。在本文中,我们报道了新的NAD +类似物,它们可以被野生型ART有效处理,并且由于缺少所需的羟基而导致链终止,从而显着降低了蛋白质修饰的复杂性。由于存在炔基,这些NAD +类似物允许通过点击化学进行后续操作,以使用染料或亲和标记物进行标记。这项研究提供了对ARTs底物范围的深入了解,并可能为进一步研究PAR代谢的化学工具铺平道路。
  • Human serine racemase is allosterically modulated by NADH and reduced nicotinamide derivatives
    作者:Stefano Bruno、Francesco Marchesani、Luca Dellafiora、Marilena Margiotta、Serena Faggiano、Barbara Campanini、Andrea Mozzarelli
    DOI:10.1042/bcj20160566
    日期:2016.10.15
    Serine racemase catalyzes both the synthesis and the degradation of d-serine, an obligatory co-agonist of the glutamatergic NMDA receptors. It is allosterically controlled by adenosine triphosphate (ATP), which increases its activity around 7-fold through a co-operative binding mechanism. Serine racemase has been proposed as a drug target for the treatment of several neuropathologies but, so far, the
    丝氨酸消旋酶催化谷氨酸能NMDA受体的必需辅助激动剂d-丝氨酸的合成和降解。它由三磷酸腺苷(ATP)进行变构控制,该ATP通过合作结合机制将其活性提高了约7倍。丝氨酸消旋酶已被提议作为治疗几种神经病理学的药物靶标,但到目前为止,已发现仅针对活性部位,并鉴定了几种低亲和力抑制剂。在最近观察到烟酰胺腺嘌呤二核苷酸(还原形式)(NADH)抑制丝氨酸消旋酶后,在这里我们显示该抑制作用是部分抑制的,IC50为246±63μM,比NADH细胞内浓度高几倍。在饱和NADH浓度下,ATP的结合亲和力降低了2倍,并且没有协同作用,表明配体竞争。在不存在ATP的情况下,NADH还可以降低人丝氨酸消旋酶的弱活性,这表明存在另一种不依赖ATP的抑制机制。通过解剖NADH分子,我们发现抑制决定簇是N-取代的1,4-二氢烟酰胺环。特别地,NADH前体1,4-二氢烟酰胺单核苷酸表现出部分混合型抑制,KI为18±7μM。对接模拟表明,所有1
  • Synthesis of cyclic adenosine 5′-diphosphate ribose analogues: a C2′ endo/syn “southern” ribose conformation underlies activity at the sea urchin cADPR receptor
    作者:Christelle Moreau、Gloria A. Ashamu、Victoria C. Bailey、Antony Galione、Andreas H. Guse、Barry V. L. Potter
    DOI:10.1039/c0ob00396d
    日期:——
    Novel 8-substituted base and sugar-modified analogues of the Ca2+ mobilizing second messenger cyclic adenosine 5′-diphosphate ribose (cADPR) were synthesized using a chemoenzymatic approach and evaluated for activity in sea urchin egg homogenate (SUH) and in Jurkat T-lymphocytes; conformational analysis investigated by 1H NMR spectroscopy revealed that a C2′ endo/syn conformation of the “southern” ribose is crucial for agonist or antagonist activity at the SUH-, but not at the T cell-cADPR receptor.
    采用化学酶法合成了新型 8 取代碱基和糖修饰的 Ca2+ 调动第二信使环腺苷-5â²-二磷酸核糖(cADPR)类似物,并对其在海胆卵匀浆(SUH)和 Jurkat T 淋巴细胞中的活性进行了评估;通过 1H NMR 光谱进行的构象分析发现,C2â² 内/同步构象是 CADPR 在海胆蛋匀浆(SUH)受体(而不是在 T 细胞-CADPR 受体)中发挥激动剂或拮抗剂活性的关键。
  • PROBE FOR IMAGING PARP-1 ACTIVITY
    申请人:The Board of Trustees of the Leland Stanford Junior University
    公开号:US20160185805A1
    公开(公告)日:2016-06-30
    Provided are embodiments of a small molecule tracer for positron emission tomography (PET) imaging of the enzyme activity of PARP-1 that is responsible for DNA-damage sensing and critically involved in radiation therapy and some chemotherapy response mechanisms. These PARP-1 tracers are derivatives of nicotinamide adenine dinucleotide (NAD), which is the natural substrate for PARP-1. Provided are NAD derivatives that include a linker moiety to which may be attached a label moiety such as a PET detectable fluorine to generate a 6N-(triazo-PEG2- 18 F)-NAD. Especially advantageous for use in PET and MRI scanning detection systems is the attachment of a chelating agent that allows for the formation of a chelator-metal ion complex.
    提供了一种用于正电子发射断层扫描(PET)成像PARP-1酶活性的小分子示踪剂的实施例,PARP-1酶负责DNA损伤感知,在放射治疗和一些化疗反应机制中起着关键作用。这些PARP-1示踪剂是烟酰胺腺嘌呤二核苷酸(NAD)的衍生物,NAD是PARP-1的天然底物。提供了包括连接基团的NAD衍生物,可以附加标记基团,如PET可检测的氟,以生成6N-(triazo-PEG2-18F)-NAD。尤其适用于PET和MRI扫描检测系统的是连接螯合剂的附着,允许形成螯合剂-金属离子复合物。
  • Emissive Synthetic Cofactors: An Isomorphic, Isofunctional, and Responsive NAD<sup>+</sup> Analogue
    作者:Alexander R. Rovira、Andrea Fin、Yitzhak Tor
    DOI:10.1021/jacs.7b05852
    日期:2017.11.8
    of a fluorescent NAD+ analogue based on an isothiazolo[4,3-d]pyrimidine core (NtzAD+) are described. Enzymatic reactions, photophysically monitored in real time, show NtzAD+ and NtzADH to be substrates for yeast alcohol dehydrogenase and lactate dehydrogenase, respectively, with reaction rates comparable to that of the native cofactors. A drop in fluorescence is seen as NtzAD+ is converted to NtzADH
    描述了基于异噻唑并[4,3- d ]嘧啶核(N tz AD +)的荧光NAD +类似物的合成,光物理和生化作用。实时光物理监测的酶促反应显示,N tz AD +和N tz ADH分别是酵母醇脱氢酶和乳酸脱氢酶的底物,其反应速率与天然辅因子相当。当N tz AD +转换为N tz ADH时,荧光下降反映了与自然NAD + / NADH互补的光物理行为。N tz AD +和N tz ADH用作NADase的底物,可选择性裂解烟酰胺的糖苷键,产生tz ADP-核糖。N tz AD +还用作核糖基转移酶的底物,包括人腺苷核糖基转移酶5(ART5)和霍乱毒素亚基A(CTA),它们水解烟酰胺并转移tz ADP-核糖。分别形成精氨酸类似物。这些反应可以通过荧光光谱法进行监测,这与使用非放射性NAD +的相应过程形成了鲜明的对比。
查看更多

同类化合物

烟酸单核苷酸 β-烟酰胺单核苷酸 3-氨基甲酰-1-[5-O-(羟基膦酸)-alpha-D-呋喃核糖基]吡啶鎓 but-3-yn-l-yl (((2R,3S,4R,5R)-5-(3-carbamoylpyridin-l-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl) phosphate nicotinamide mononucleotide nicotinate D-ribonucleotide 1,4-dihydronicotinamide adenine dinucleotide α-Nicotinamid-mononucleotid 3-Carbamoyl-1-((2S,3S,4R,5S)-3,4-dihydroxy-5-phosphonooxymethyl-tetrahydro-furan-2-yl)-pyridinium NMNH Nicotinamide-benzimidazole dinucleotide [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl 2-[2-(2-methoxyphenoxy)ethoxy]ethyl phosphate [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl 2-[1-[5-(naphthalen-1-ylmethylamino)-5-oxopentyl]triazol-4-yl]ethyl phosphate 2-(1-adamantyl)ethyl [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate 2-[1-[5-(benzhydrylamino)-5-oxopentyl]triazol-4-yl]ethyl [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl 2-[2-(3-methylphenoxy)ethoxy]ethyl phosphate [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl 2-phenylethyl phosphate [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl 5-phenoxypentyl phosphate [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl 2-[1-[5-oxo-5-[(4-phenylphenyl)methylamino]pentyl]triazol-4-yl]ethyl phosphate 2-(1-benzyltriazol-4-yl)ethyl [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl 2-[2-(3-fluorophenoxy)ethoxy]ethyl phosphate butyl [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate 1-(3'-deoxy-3'-fluoro-β-D-xylofuranosyl)nicotinamide-5'-phosphate 1-(3'-azido-3'-deoxy-β-D-ribofuranosyl)nicotinamide-5'-(benzyl phosphate) 1-(3'-azido-3'-deoxy-β-D-ribofuranosyl)nicotinamide-5'-(butyl phosphate) [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl methyl phosphate beta-Nicotinamide mononucleotide [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl methyl hydrogen phosphate 1-[(2R,3R,4R,5R)-3,4-dihydroxy-5-(phosphonooxymethyl)oxolan-2-yl]pyridin-1-ium-3-carboxylic acid 1-[(2R,3S,4R,5R)-3,4-dihydroxy-5-(phosphonooxymethyl)oxolan-2-yl]pyridin-1-ium-3-carboxylic acid [(2R,3S,4R,5R)-5-(benzimidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphono phosphate [[(2R,3R,4R,5R)-5-amino-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl hydrogen phosphate 1-[(2R,3R,4R,5S)-3,4-dihydroxy-5-(phosphonooxymethyl)oxolan-2-yl]pyridin-1-ium-3-carboxylic acid [(2S,3S,4R,5S)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate [amino-[5-azanidyl-1-[5-[[[[5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxymethyl]-4-hydroxy-3-phosphonooxyoxolan-2-yl]imidazolidine-4,5-diid-4-yl]methyl]azanide [(2S,3R,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate 1-[(2S,3S,4R,5S)-3,4-dihydroxy-5-(phosphonooxymethyl)oxolan-2-yl]pyridin-1-ium-3-carboxylic acid Pyridinium, 3-carboxy-1-(5-O-phosphono-beta-D-ribofuranosyl)-, inner salt [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl [[(2S,3R,4S,5S)-3,4-dihydroxy-5-(4-naphthalen-1-yltriazol-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphate [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl [[(2S,3R,4S,5S)-3,4-dihydroxy-5-(4-phenyltriazol-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphate [[(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2S,3R,4S,5S)-3,4-dihydroxy-5-(4-phenyltriazol-1-yl)oxolan-2-yl]methyl hydrogen phosphate β-nicotinamide mononucleotide [(2R,3R,4S,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate 1-[(2R,3R,4S,5S)-3,4-dihydroxy-5-(phosphonooxymethyl)oxolan-2-yl]pyridin-1-ium-3-carboxylic acid [(2S,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate 1-[(2R,3S,4S,5S)-3,4-dihydroxy-5-(phosphonooxymethyl)oxolan-2-yl]pyridin-1-ium-3-carboxylic acid 1-[(2S,3R,4S,5S)-3,4-dihydroxy-5-(phosphonooxymethyl)oxolan-2-yl]pyridin-1-ium-3-carboxylic acid [(2S,3S,4S,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate [(2S,3S,4S,5S)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate 1-[(2S,3S,4S,5S)-3,4-dihydroxy-5-(phosphonooxymethyl)oxolan-2-yl]pyridin-1-ium-3-carboxylic acid