Organic nitriles are converted into cyanide ions through the action of cytochrome P450 enzymes in the liver. Cyanide is rapidly absorbed and distributed throughout the body. Cyanide is mainly metabolized into thiocyanate by either rhodanese or 3-mercaptopyruvate sulfur transferase. Cyanide metabolites are excreted in the urine. (L96)
Organic nitriles decompose into cyanide ions both in vivo and in vitro. Consequently the primary mechanism of toxicity for organic nitriles is their production of toxic cyanide ions or hydrogen cyanide. Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected. Cyanide is also known produce some of its toxic effects by binding to catalase, glutathione peroxidase, methemoglobin, hydroxocobalamin, phosphatase, tyrosinase, ascorbic acid oxidase, xanthine oxidase, succinic dehydrogenase, and Cu/Zn superoxide dismutase. Cyanide binds to the ferric ion of methemoglobin to form inactive cyanmethemoglobin. (L97)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
致癌物分类
对人类无致癌性(未列入国际癌症研究机构IARC清单)。
No indication of carcinogenicity to humans (not listed by IARC).
β-Primeverosidase (PD) is a family 1 glycosidase catalyzing the hydrolysis of β-primeverosides (6-O-β-d-xylopyranosyl-β-d-glucopyranosides) to release a disaccharide primeverose. To investigate how PD recognizes the disaccharide moiety of β-primeverosides, the recombinant PD was expressed by a baculovirus-insect cell system. The recombinant PD was secreted from High Five cells and was properly modified with N-glycosylation and correct cleavage at the N-terminal signal peptide. The recombinant PD exhibited high substrate specificity to β-primeverosides in terms of the glycone moiety, consistently with the substrate specificity of native PD from Camellia sinensis. Next, β-glycosylamidines were synthesized as substrate analog inhibitors. β-Primeverosylamidine strongly inhibited PD activity, but β-glucosylamidine did not. Hence β-primeverosylamidine is an ideal chemical tool for probing disaccharide recognition in the active site of PD. An affinity adsorbent for PD was prepared using β-primeverosylamidine as a ligand. Affinity chromatography gave large amounts of PD with high purity, permitting crystallographic study.
BITTER TASTE MODIFIERS INCLUDING SUBSTITUTED 1-BENZYL-3-(1-(ISOXAZOL-4-YLMETHYL)-1H-PYRAZOL-4-YL)IMIDAZOLIDINE-2,4-DIONES AND COMPOSITIONS THEREOF
申请人:SENOMYX, INC.
公开号:US20160376263A1
公开(公告)日:2016-12-29
The present invention includes compounds and compositions known to modify the perception of bitter taste, and combinations of said compositions and compounds with additional compositions, compounds, and products. Exemplary compositions comprise one or more of the following: cooling agents; inactive drug ingredients; active pharmaceutical ingredients; food additives or foodstuffs; flavorants, or flavor enhancers; food or beverage products; bitter compounds; sweeteners; bitterants; sour flavorants; salty flavorants; umami flavorants; plant or animal products; compounds known to be used in pet care products; compounds known to be used in personal care products; compounds known to be used in home products; pharmaceutical preparations; topical preparations; cannabis-derived or cannabis-related products; compounds known to be used in oral care products; beverages; scents, perfumes, or odorants; compounds known to be used in consumer products; silicone compounds; abrasives; surfactants; warming agents; smoking articles; fats, oils, or emulsions; and/or probiotic bacteria or supplements.
General and Stereocontrolled Approach to the Chemical Synthesis of Naturally Occurring Cyanogenic Glucosides
作者:Birger L. Møller、Carl E. Olsen、Mohammed S. Motawia
DOI:10.1021/acs.jnatprod.5b01121
日期:2016.4.22
An effective method for the chemical synthesis of cyanogenic glucosides has been developed as demonstrated by the synthesis of dhurrin, taxiphyllin, prunasin, sambunigrin, heterodendrin, and epiheterodendrin. O-Trimethylsilylated cyanohydrins were prepared and subjected directly to glucosylation using a fully acetylated glucopyranosyl fluoride donor with boron trifluoride–diethyl etherate as promoter
Glucose-1-benzoate and prunasin from Prunus serotina
作者:Stephen B. Horsley、Jerrold Meinwald
DOI:10.1016/0031-9422(81)83041-5
日期:1981.1
Abstract β- d -Glucopyranose 1-benzoate and prunasin have been isolated from the leaves of Prunusserotina . Both can yield benzoic acid, a potential allelopathic inhibitor of Acer rubrum .
[EN] INHIBITING HYDROCARBON HYDRATE AGGLOMERATION<br/>[FR] INHIBITION DE L'AGGLOMÉRATION D'HYDRATES D'HYDROCARBURES
申请人:COMMW SCIENT IND RES ORG
公开号:WO2018218281A1
公开(公告)日:2018-12-06
A process for inhibiting the formation of gas hydrates in a hydrocarbon fluid comprising adding to the hydrocarbon fluid, a gas hydrate anti-agglomerate which is a biodegradable anti-agglomerant derived from a naturally occurring substance.