由于铜电极可在0.1 M KOH中催化甲醛(HCHO)氧化反应(FOR)和氧还原反应,因此这些氧化还原系统可用于组装具有理想静止电位0.8 V的HCHO燃料电池。室温下,可在铜电极上氧化时释放出氢,该系统可作为H 2便携式来源。本研究采用自制的Cu(111)和Cu 100-x Ni x单晶电极(111)(x = 1.5和4.3)突出显示了在0.1 M KOH中,Cu电极中Ni掺杂剂(〜1.5%摩尔比)对FOR的令人惊讶的增强作用。这些有序电极是通过在环境空气中进行的退火和淬火方法(不涉及真空)制成的。通过伏安法和计时安培法检查了它们在KOH中的FOR活性,从中发现Cu 98·5 Ni 1.5(111)电极的活性是Cu(111)电极的12倍。Cu晶体中的Ni含量从1.5%增加到4.3%不能证实FOR活性。在KOH和KOD的介质中探测了这些电极上的FOR的速率确定步骤,揭示了在Cu 98·5 Ni
Plasma-Assisted Dissociation of Organometallic Vapors for Continuous, Gas-Phase Preparation of Multimetallic Nanoparticles
作者:Pin Ann Lin、R. Mohan Sankaran
DOI:10.1002/anie.201101881
日期:2011.11.11
Vapor‐sized: In a plasma‐based route to multimetallicnanoparticles (NPs), vapor mixtures of organometallic compounds are dissociated in an atmospheric‐pressure microplasma (see picture). The size and composition of the particles is controlled by the relative vapor concentrations of the precursors.
with Sn at 488 K results in the formation of e-Cu3Sn and η-Cu6Sn5 intermetallic compounds, and small additives of Ni in the Cu-substrate (up to 1 at. %), do not influence phase composition of the diffusion zone. It was found that in the η-phase, Sn diffuses somewhat faster than Cu (and Ni) does, and diffusion porosity is developed in the vicinity of the substrate/reaction product interface. When a Cu–Ni
摘要 纯 Cu 与 Sn 在 488 K 的扩散控制相互作用导致形成 e-Cu3Sn 和 η-Cu6Sn5 金属间化合物,Cu 基材中的少量 Ni 添加剂(高达 1 原子百分比)不会影响扩散区的相组成。发现在 η 相中,Sn 的扩散速度比 Cu(和 Ni)稍快,并且在基材/反应产物界面附近形成了扩散孔隙。当含有 (5-25) 的 Cu-Ni 合金时。在 488 K 时,Ni 的 % 参与了相互作用,没有形成 e 相,在反应界面附近也没有发现孔。在这些对中,作为基准标记引入接触表面的 ThO2 粒子,在靠近与 Sn 界面的 (Cu,Ni)6Sn5 产物层内部相互作用后结束。反应层生长遵循抛物线动力学,Cu1-xNix/Sn (x = 0.05–0.25) 对中 (Cu,Ni)6Sn5 产物的生长速率远高于二元 Cu/ Sn 和具有较低 Ni 含量的三元对。TEM 研究表明,Cu25Ni/Sn
Synthesis of Ni–Cu Particles by Hydrogen Reduction in Hot-compressed Water
作者:Kiwamu Sue、Satoshi Tanaka、Toshihiko Hiaki
DOI:10.1246/cl.2006.50
日期:2006.1
Synthesis of Cu and Ni–Cu particles from their aqueous formate solution by hydrogen reduction in hot-compressed water was carried out at 673 K with a titanium alloy autoclave. Hydrogen was produced by thermal decomposition of the formates. Metal particles having an average size of around 500 nm were produced without any additives. Ni–Cu metal alloy particles having different compositions were obtained by changing Cu/Ni molar ratio in starting solutions.
在 673 K 的钛合金高压釜中,利用热压缩水中的氢还原法,从铜和镍铜的甲酸盐水溶液中合成了铜和镍铜粒子。氢是通过甲酸盐的热分解产生的。在不使用任何添加剂的情况下,制备出平均尺寸约为 500 nm 的金属颗粒。通过改变起始溶液中的铜/镍摩尔比,可获得不同成分的镍-铜金属合金颗粒。
A noble-metal-free nanocatalyst for highly efficient and complete hydrogen evolution from N<sub>2</sub>H<sub>4</sub>BH<sub>3</sub>
dehydrogenation of hydroushydrazine (N2H4·H2O). The excellent catalyticperformance of the Cu0.4Ni0.6Mo catalyst may be attributed to the electronic modification among Cu, Ni and Mo, and may also be related to the strong basic sites of Cu0.4Ni0.6Mo. The present simple, low cost, highly efficient, and highly selective catalyst may promote the practical application of N2H4BH3 as an effective hydrogenstorage material
肼硼烷(N 2 H 4 BH 3,H 15.4 wt%H)由于其固有的优势(例如高氢含量和高固态稳定性)而被认为是一种很有前途的储氢材料。然而,由于需要昂贵的贵金属基催化剂,强烈抑制了N 2 H 4 BH 3在产生氢中的实际应用。为了克服这一挑战,在室温和环境气氛下使用简便的化学还原方法制备了不含贵金属的CuNiMo纳米催化剂。出乎意料的是,所得的CuNiMo催化剂表现出优异的催化活性和100%的H 2。N 2 H 4 BH 3通过其BH 3基团水解和N 2 H 4部分在323 K分解生成氢的选择性。据我们所知,这是第一个关于无贵金属催化剂实现氢键反应的报道。 N 2 H 4 BH 3完全转化为H 2。另外,CuNiMo可以实现含水肼(N 2 H 4 ·H 2 O)的完全脱氢。Cu 0.4 Ni 0.6的优异催化性能Mo催化剂可能归因于Cu,Ni和Mo之间的电子修饰,也可能与Cu 0.4 Ni
Hydrogenation of 3-nitro-4-methoxy-acetylaniline with H<sub>2</sub> to 3-amino-4-methoxy-acetylaniline catalyzed by bimetallic copper/nickel nanoparticles