摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3β-(formyloxy)-urs-12-en-28-oic acid | 6227-55-0

中文名称
——
中文别名
——
英文名称
3β-(formyloxy)-urs-12-en-28-oic acid
英文别名
(1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-formyloxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid
3β-(formyloxy)-urs-12-en-28-oic acid化学式
CAS
6227-55-0
化学式
C31H48O4
mdl
——
分子量
484.72
InChiKey
OECMCPLQZXRLFK-QHQGJMPNSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    562.9±50.0 °C(Predicted)
  • 密度:
    1.10±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    7.9
  • 重原子数:
    35
  • 可旋转键数:
    3
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.87
  • 拓扑面积:
    63.6
  • 氢给体数:
    1
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    甲酸熊果酸 反应 6.0h, 以90%的产率得到3β-(formyloxy)-urs-12-en-28-oic acid
    参考文献:
    名称:
    过氧化氢的立体化学-熊果酸及相关化合物的乙酸氧化。
    摘要:
    使用NMR数据和X射线分析确定了熊果酸的许多氧化衍生物的立体化学。在1 H和13 C NMR光谱中对26种天然和合成的类熊烷三萜类化合物进行了全信号分配。根据原料和某些中间物种的化学行为和分子力学计算,提出了乌索酸和相关化合物被过酸氧化的可能机理,以及次级过程的机理。
    DOI:
    10.1016/s0040-4020(01)89285-1
点击查看最新优质反应信息

文献信息

  • Ursolic acid derivatives as potential antidiabetic agents: <i>In vitro</i> , <i>in vivo</i> , and <i>in silico</i> studies
    作者:Ricardo Guzmán-Ávila、Virginia Flores-Morales、Paolo Paoli、Guido Camici、Juan José Ramírez-Espinosa、Litzia Cerón-Romero、Gabriel Navarrete-Vázquez、Sergio Hidalgo-Figueroa、Maria Yolanda Rios、Rafael Villalobos-Molina、Samuel Estrada-Soto
    DOI:10.1002/ddr.21422
    日期:2018.3
    Hit, Lead & Candidate Discovery
    命中,线索和候选发现
  • Antibacterial and Antioxidant Activities of Ursolic Acid and Derivatives
    作者:Patrícia do Nascimento、Telma Lemos、Ayla Bizerra、Ângela Arriaga、Daniele Ferreira、Gilvandete Santiago、Raimundo Braz-Filho、José Costa
    DOI:10.3390/molecules19011317
    日期:——
    Ursolic acid, an important bioactive compound, was isolated from ethanol extract of aerial parts of Sambucus australis. In order to develop bioactive ursolic acid derivatives, two semi-synthetic compounds were obtained through modification at C-3. The antibacterial activity of the ursolic acid and its derivatives was investigated. The microdilution method was used for determination of the minimal inhibitory concentration (MIC), against twelve bacterial strains. The influence of ursolic acid and its derivatives on the susceptibility of some bacterial pathogens to the aminoglycosides antibiotics neomycin, amikacin, kanamycin and gentamicin was evaluated. The most representative synergistic effect was observed by 3β-formyloxy-urs-12-en-28-oic acid at the concentration of 64 μg/mL in combination with kanamycin against Escherichia coli (27), a multidrug-resistant clinical isolate from sputum, with reduction of MIC value from 128 μg/mL to 8 μg/mL. Ursolic acid and its derivatives were examined for their radical scavenger activity using the DPPH assay, and showed significant activity.
    熊果酸是一种重要的生物活性化合物,它是从三叶草(Sambucus australis)气生部分的乙醇提取物中分离出来的。为了开发具有生物活性的熊果酸生物,通过对 C-3 进行修饰,获得了两种半合成化合物。研究了熊果酸及其衍生物的抗菌活性。采用微量稀释法测定了对 12 种细菌菌株的最小抑菌浓度(MIC)。研究还评估了熊果酸及其衍生物对一些细菌病原体对基糖苷类抗生素新霉素、阿米卡星卡那霉素庆大霉素敏感性的影响。最具代表性的协同作用是 3β-formyloxy-urs-12-en-28-oic acid 与卡那霉素(kanamycin)联用(浓度为 64 μg/mL)对大肠埃希菌(27)(一种从痰中分离出来的耐多种药物的临床菌株)的作用,其 MIC 值从 128 μg/mL 降至 8 μg/mL。熊果酸及其衍生物采用 DPPH 法检测其自由基清除剂活性,结果表明它们具有显著的活性。
  • Hemodialysis-associated hypertension: Pathophysiology and therapy
    作者:Matthias P. Hörl、Walter H. Hörl
    DOI:10.1053/ajkd.2002.30542
    日期:2002.2
    The majority of end-stage renal disease (ESRD) patients are hypertensive. Hypertension in the hemodialysis patient population is multifactorial. Further, hypertension is associated with an increased risk for left ventricular hypertrophy, coronary artery disease, congestive heart failure, cerebrovascular complications, and mortality. Anti hypertensive medications alone do not adequately control blood pressure (BP) in hemodialysis patients. There are, however, several therapeutic options available to normalize BP in these patients, often without the need for additional drug therapy (eg, long, slow hemodialysis; short, daily hemodialysis; nocturnal hemodialysis; or, most effectively, dietary salt and fluid restriction in combination with reduction of dialysate sodium concentration). Optimal BP in dialysis patients is not different from recommendations for the general population, even though definite evidence is not yet available. Predialysis systolic and diastolic BPs are of particular importance. Left ventricular mass correlates with predialysis systolic BP. Survival is better in hemodialysis patients with a mean arterial pressure below 99 mm Hg as compared with those with higher BP. Low predialysis systolic BP (<110 mm Hg) and low predialysis diastolic BP (<70 mm Hg) are associated with increased mortality, primarily because of severe congestive heart failure or coronary artery disease. Patients that experience repeated intradialytic hypotensive episodes should also be viewed with caution, and predialytic BP values should be reevaluated. A possible treatment option for these patients may be slow, long hemodialysis; short, daily hemodialysis; or nocturnal hemodialysis. Among the anti hypertensive agents currently available, angiotensin-converting enzyme (ACE) inhibitors appear to have the greatest ability to reduce left ventricular mass. Pressure load can be satisfactorily determined by using the average value of predialysis BP measurements over 1 month. In selected hemodialysis patients, interdialytic ambulatory blood pressure monitoring (ABPM) may help to determine if the patient is in fact hypertensive. In addition, ABPM provides important information about the change in BP between day and night. Regular home BP monitoring, yearly echocardiography, and treatment of traditional risk factors for cardiovascular disease are recommended. (C) 2002 by the National Kidney Foundation, Inc.
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (1aR,4E,7aS,8R,10aS,10bS)-8-[((二甲基氨基)甲基]-2,3,6,7,7a,8,10a,10b-八氢-1a,5-二甲基-氧杂壬酸[9,10]环癸[1,2-b]呋喃-9(1aH)-酮 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸溴乙酯 齐墩果酸二甲胺基乙酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 齐墩果-12-烯-28-酸,3,7-二羰基-(9CI) 齐墩果-12-烯-28-酸,3,21,29-三羟基-,g-内酯,(3b,20b,21b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸