摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-formylphenyl 2-phenylacetate

中文名称
——
中文别名
——
英文名称
4-formylphenyl 2-phenylacetate
英文别名
(4-Formylphenyl) 2-phenylacetate
4-formylphenyl 2-phenylacetate化学式
CAS
——
化学式
C15H12O3
mdl
——
分子量
240.258
InChiKey
BEOIJVJHRMGKBS-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.7
  • 重原子数:
    18
  • 可旋转键数:
    5
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.07
  • 拓扑面积:
    43.4
  • 氢给体数:
    0
  • 氢受体数:
    3

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    4-formylphenyl 2-phenylacetate 在 sodium tetrahydroborate 、 N,N-二异丙基乙胺 作用下, 以 二氯甲烷异丙醇甲苯 为溶剂, 反应 5.5h, 生成 PhAcOZ-Pro-OH
    参考文献:
    名称:
    Chemoenzymatic Synthesis of a Characteristic Phosphorylated and Glycosylated Peptide Fragment of the Large Subunit of Mammalian RNA Polymerase II
    摘要:
    The covalent modification of proteins by phosphorylation and addition of GlcNAc residues are important regulatory processes which mediate biological signal transduction. For instance, the cytosolic form of RNA polymerase II is heavily glycosylated but during its transition from an initiating to an elongating complex the carbohydrates are removed and the protein is phosphorylated. For the study of such biological phenomena, characteristic peptides which embody both types of modifications may serve as efficient tools. However, their synthesis is complicated by their pronounced acid and base lability as well as their multifunctionality. These properties make the application of protecting groups necessary which can be removed under the mildest conditions. For the construction of such peptide conjugates the enzyme labile PhAcOZ urethane blocking group was developed. This protecting group embodies (a) a functional group (a phenylacetate) that is recognized by the biocatalyst (penicillin G acylase) and that is bound by an enzyme labile linkage (an ester) to (b) a functional group (a p-hydroxybenzyl urethane) that undergoes a spontaneous fragmentation upon cleavage of the enzyme-sensitive bond resulting in (c) the liberation of a carbamic acid derivative which decarboxylates to give the desired peptide or peptide conjugate. When this enzymatic protecting group technique was combined with classical chemical methods, a complex phosphoglycohexapeptide was built up, which embodies two glycosylated, one phosphorylated, and one underivatized hydroxyamino acid. This peptide represents a characteristic partial structure of the repeat sequence of the large subunit of RNA polymerase II which becomes glycosylated or phosphorylated while the enzyme carries out its biological functions. The conditions under which the enzymatic deprotections proceed are so mild that no undesired side reaction is observed (i.e., no rupture or anomerization of the glycosidic bonds and no beta-elimination of the phosphate or a carbohydrate occur). In addition, the specificity of the biocatalyst guarantees that the peptide bonds and the other protecting groups present are not attacked either.
    DOI:
    10.1021/ja970709e
  • 作为产物:
    描述:
    参考文献:
    名称:
    Design, Synthesis and Evaluation of Rhodanine Derivatives as Aldose Reductase Inhibitors
    摘要:
    Aldose reductase (ALR) enzyme plays a significant role in conversion of excess amount of glucose into sorbitol in diabetic condition, inhibitors of which decrease the secondary complication of diabetes mellitus. To understand the structural interaction of inhibitors with ALR enzyme and develop more effective ALR inhibitors, a series of substituted 5‐phenylbenzoate containing N‐substituted rhodanine derivatives were synthesized and evaluated for their in vitro ALR inhibitory activity. Docking studies of these compounds were carried out, which revealed that the 5‐phenylbenzoate moiety deeply influenced the key ππ stacking while 4‐oxo‐2‐thioxothiazolidines contributed in hydrogen bond interactions. The phenyl ring of benzylidene system occupied in specific pocket constituted from Phe115, Phe122, Leu300 and Cys303 while the rhodanine ring forms a tight net of hydrogen bond with Val47 at anionic binding site of the enzyme. The structural insights obtained from the docking study gave better understanding of rhodanine and macromolecular interaction and will help us in further designing and improving of ALR inhibitory activity of rhodanine analogs.
    DOI:
    10.1111/cbdd.12369
点击查看最新优质反应信息

文献信息

  • BISPHOSPHONATE COMPOUNDS
    申请人:Ebetino Frank Hallock
    公开号:US20110098251A1
    公开(公告)日:2011-04-28
    Novel bisphosphonate cyclic acetal compounds are disclosed, as well as methods of preparing the compounds, pharmaceutical compositions including the compounds, and administration of the compounds in methods of treating bone metabolism disorders, such as abnormal calcium and phosphate metabolism.
    揭示了一种新型的双膦酸环缩醛化合物,以及制备这些化合物的方法,包括这些化合物的药物组合物,以及在治疗骨代谢紊乱的方法中给予这些化合物的方法,例如异常的钙和磷代谢。
  • METHOD FOR PRODUCING OPTICALLY ACTIVE CYANOHYDRIN COMPOUND
    申请人:Sumitomo Chemical Company, Limited
    公开号:EP2264005A1
    公开(公告)日:2010-12-22
    A method of producing an optically active cyanohydrin compound represented by formula (3) (wherein, Q1 and Q2 are as defined below, and * represents that the indicated carbon atom is the optically active center) comprising reacting an aldehyde compound represented by formula (2) (wherein, Q1 and Q2 represent each independently a hydrogen atom, optionally substituted alkyl group having 1 to 6 carbon atoms, or the like) with hydrogen cyanide in the presence of a silyl compound and an asymmetric complex which is obtained by reacting an optically active pyridine compound represented by formula (1) (wherein, R1 and R2 represent each independently a hydrogen atom, alkyl group having 1 to 6 carbon atoms, or the like, provided that R1 and R2 are not the same.) with an aluminum halide.
    一种生产由式(3)表示的光学活性氰醇化合物的方法 (其中,Q1 和 Q2 如下文所定义,* 代表所指示的碳原子是光学活性中心)的方法,包括使式(2)所代表的醛化合物发生反应 (其中,Q1 和 Q2 各自独立地代表氢原子、具有 1 至 6 个碳原子的任选取代的烷基或类似基团)与氰化氢在硅烷基化合物和一种不对称络合物的存在下反应,该不对称络合物是由式(1)所代表的具有光学活性的吡啶化合物反应得到的 (其中,R1 和 R2 各自独立地代表氢原子、具有 1 至 6 个碳原子的烷基或类似基团,但 R1 和 R2 不能相同)与卤化铝反应。
  • Formulating a new basis for the treatment against botulinum neurotoxin intoxication: 3,4-Diaminopyridine prodrug design and characterization
    作者:Joseph S. Zakhari、Isao Kinoyama、Mark S. Hixon、Antonia Di Mola、Daniel Globisch、Kim D. Janda
    DOI:10.1016/j.bmc.2011.09.019
    日期:2011.11
    Botulism is a disease characterized by neuromuscular paralysis and is produced from botulinum neurotoxins (BoNTs) found within the Gram positive bacterium Clostridium botulinum. This bacteria produces the most deadliest toxin known, with lethal doses as low as 1 ng/kg. Due to the relative ease of production and transport, the use of these agents as potential bioterrorist weapons has become of utmost concern. No small molecule therapies against BoNT intoxication have been approved to date. However, 3,4-diaminopyridine (3,4-DAP), a potent reversible inhibitor of voltage-gated potassium channels, is an effective cholinergic agonist used in the treatment of neuromuscular degenerative disorders that require cholinergic enhancement. 3,4-DAP has also been shown to facilitate recovery of neuromuscular action potential post botulinum intoxication by blocking K(+) channels. Unfortunately, 3,4-DAP displays toxicity largely due to blood-brain-barrier (BBB) penetration. As a dual-action prodrug approach to cholinergic enhancement we have designed carbamate and amide conjugates of 3,4-DAP. The carbamate prodrug is intended to be a slowly reversible inhibitor of acetylcholinesterase (AChE) along the lines of the stigmines thereby allowing increased persistence of released acetylcholine within the synaptic cleft. As a secondary activity, cleavage of the carbamate prodrug by AChE will afford the localized release of 3,4-DAP, which in turn, will enhance the pre-synaptic release of additional acetylcholine. Being a competitive inhibitor with respect to acetylcholine, the activity of the prodrug will be greatest at the synaptic junctions most depleted of acetylcholine. Here we report upon the synthesis and biochemical characterization of three new classes of prodrugs intended to limit previously reported stability and toxicity issues. Of the prodrugs examined, compound 32, demonstrated the most clinically relevant half-life of 2.76 h, while selectively inhibiting AChE over butyrylcholinesterase-a plasma-based high activity esterase. Future in vivo studies could provide validation of prodrug 32 as a potential treatment against BoNT intoxication as well as other neuromuscular disorders. (C) 2011 Elsevier Ltd. All rights reserved.
  • METHOD FOR PRODUCING BENZALDEHYDE COMPOUND
    申请人:Sumitomo Chemical Company, Limited
    公开号:EP2154123B1
    公开(公告)日:2013-10-23
  • BISPHOSPHONATE COMPOUNDS FOR TREATING BONE METABOLISM DISORDERS
    申请人:Warner Chilcott Company, LLC
    公开号:EP2493905B1
    公开(公告)日:2016-11-30
查看更多

同类化合物

马来酰亚胺-酰胺-PEG8-四氟苯酚酯 马来酰亚胺-四聚乙二醇-五氟苯酯 马来酰亚胺-三聚乙二醇-五氟苯酚酯 靛酚乙酸酯 间氯苯乙酸乙酯 间乙酰苯甲酸 酚醛乙酸酯 邻苯二酚二乙酸酯 邻甲苯基环己甲酸酯 邻甲氧基苯乙酸酯 辛酸苯酯 辛酸对甲苯酚酯 辛酸-(3-氯-苯基酯) 辛酰溴苯腈 苯酰胺,3,4-二(乙酰氧基)-N-[6-氨基-1,2,3,4-四氢-1-(4-甲氧苯基)-3-甲基-2,4-二羰基-5-嘧啶基]- 苯酚-乳酸 苯酚,4-异氰基-,乙酸酯(ester) 苯酚,4-[(四氢-2H-吡喃-2-基)氧代]-,乙酸酯 苯酚,3-(1,1-二甲基乙基)-,乙酸酯 苯甲醇,4-(乙酰氧基)-3,5-二甲氧基- 苯基金刚烷-1-羧酸酯 苯基氰基甲酸酯 苯基庚酸酯 苯基己酸酯 苯基呋喃-2-羧酸酯 苯基吡啶-2-羧酸酯 苯基十一碳-10-烯酸酯 苯基乙醛酸酯 苯基乙酸酯-d5 苯基丙二酸单苯酯 苯基丙-2-炔酸酯 苯基丁-2,3-二烯酸酯 苯基4-乙基环己烷羧酸 苯基3-乙氧基-3-亚氨基丙酸盐 苯基2-(苯磺酰基)乙酸酯 苯基2-(4-甲氧基苯基)乙酸酯 苯基2-(2-甲氧基苯基)乙酸酯 苯基2-(2-甲基苯基)乙酸酯 苯基-乙酸-(2-甲酰基-苯基酯) 苯基(S)-2-苯基丙酸 苯基(2S,6S)-(顺式-6-甲基四氢吡喃-2-基)乙酸酯 苯基(2R,6S)-(反式-6-甲基四氢吡喃-2-基)乙酸酯 苯乙酸苯酯 苯乙酸对甲酚酯 苯乙酸-3-甲基苯酯 苯乙酸-2-甲氧基苯酯 苯乙酸-2-甲氧基-4-(1-丙烯基)-苯基酯 苯乙酸-2-甲氧-4-(2-丙烯基)苯(酚)酯 苯丙酸去甲睾酮 苄氧羰基-beta-丙氨酸对硝基苯酯