Effects of Altering the Electronics of 2-Methoxyestradiol on Cell Proliferation, on Cytotoxicity in Human Cancer Cell Cultures, and on Tubulin Polymerization
摘要:
A series of new analogues of 2-methoxyestradiol (1) were synthesized to further elucidate the relationships between structure and activity. The compounds were designed to diminish the potential for metabolic deactivation at positions 2 and 17 and were analyzed as inhibitors of tubulin polymerization and for cytotoxicity. 17alpha-Methyl-beta-estradiol (30), 2-propynyl-17alpha-methylestradiol (39), 2-ethoxy-17-(1'-methylene)estra-1,3,5(10)-triene-3-ol (50) and 2-ethoxy-17alpha-methylestradiol (51) showed similar or greater tubulin polymerization inhibition than 2-methoxyestradiol (1) and contained moieties that are expected to inhibit deactivating metabolic processes. All of the compounds tested were cytotoxic in the panel of 55 human cancer cell cultures, and generally, the derivatives that displayed the most activity against tubulin were also the most cytotoxic.
Effects of Altering the Electronics of 2-Methoxyestradiol on Cell Proliferation, on Cytotoxicity in Human Cancer Cell Cultures, and on Tubulin Polymerization
作者:Allison B. Edsall、Arasambattu K. Mohanakrishnan、Donglai Yang、Philip E. Fanwick、Ernest Hamel、Arthur D. Hanson、Gregory E. Agoston、Mark Cushman
DOI:10.1021/jm049647a
日期:2004.10.1
A series of new analogues of 2-methoxyestradiol (1) were synthesized to further elucidate the relationships between structure and activity. The compounds were designed to diminish the potential for metabolic deactivation at positions 2 and 17 and were analyzed as inhibitors of tubulin polymerization and for cytotoxicity. 17alpha-Methyl-beta-estradiol (30), 2-propynyl-17alpha-methylestradiol (39), 2-ethoxy-17-(1'-methylene)estra-1,3,5(10)-triene-3-ol (50) and 2-ethoxy-17alpha-methylestradiol (51) showed similar or greater tubulin polymerization inhibition than 2-methoxyestradiol (1) and contained moieties that are expected to inhibit deactivating metabolic processes. All of the compounds tested were cytotoxic in the panel of 55 human cancer cell cultures, and generally, the derivatives that displayed the most activity against tubulin were also the most cytotoxic.