摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

氨 | 7664-41-7

中文名称
中文别名
合成氨;电子级高纯氨;氨气(液氨);无水氨;氨气;水质氨;液氨(工业用);液氨
英文名称
ammonia
英文别名
Ammonia gas;ammoniak;NH3;amine;imino;azane
氨化学式
CAS
7664-41-7
化学式
H3N
mdl
——
分子量
17.0305
InChiKey
QGZKDVFQNNGYKY-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    −78 °C(lit.)
  • 沸点:
    60 °C
  • 密度:
    1.023 g/mL at 25 °C
  • 蒸气密度:
    0.6 (vs air)
  • 闪点:
    52 °F
  • 溶解度:
    与乙醇 (95%) 和水混溶。
  • 介电常数:
    25.0(-59℃)
  • 暴露限值:
    TLV-TWA 25 ppm (~18 mg/m3) (ACGIH and MSHA), 50 ppm (OSHA); STEL 35 ppm; IDLH 500 ppm (NIOSH).
  • LogP:
    0.23 at 20℃
  • 物理描述:
    Ammonia solutions (containing more than 35% but not more than 50% ammonia) appears as a clear colorless liquid consisting of ammonia dissolved in water. Corrosive to tissue and metals. Although ammonia is lighter than air, the vapors from a leak will initially hug the ground. Long term exposure to low concentrations or short term exposure to high concentrations may result in adverse health conditions from inhalation. Prolonged exposure of containers to fire or heat may result in their violent rupturing and rocketing.
  • 颜色/状态:
    Colorless gas
  • 气味:
    Sharp, cloying, repellent
  • 蒸汽密度:
    0.6 (EPA, 1998) (Relative to Air)
  • 蒸汽压力:
    Vapor pressure: 1 Pa at -139 °C, 10 Pa at -127 °C, 100 Pa at -112 °C; 1 kPa at -94.5 °C (solids); 10 kPa at -71.3 °C, 100 kPa at -33.6 °C (liquid)
  • 亨利常数:
    Henry's Law constant = 1.61X10-5 atm cu-m/mole at 25 °C
  • 稳定性/保质期:
    1. 暴露于空气中时,氨迅速挥发。溶于水,呈碱性。在室温下0.6~0.7MPa的压力下可液化(临界温度为132.5℃,临界压力为11.23MPa)。氨在空气中燃烧产生绿色火焰;若点燃氨与空气的混合物(体积比在16%~25%时),可以发生爆炸。氨极易溶于水,也溶于乙醇。液氨是一种无机质子性非水溶剂,具有较大的介电常数、偶极矩和氢键键能;其摩尔体积虽大于水但小于HCN、H2S、SO2等其他无机溶剂。因此,液氨是强电解质的良好溶解介质,并且由于范德华力大,还能溶解碘离子、烯烃、芳香烃以及含有羟基和氨基的化合物。特别地,液氨能溶解碱金属和碱土金属,作为化学还原的溶剂用于多种有机化学反应。无机化合物如硝酸盐、亚硝酸盐、碘化物、溴化物、氰化物、硫氰化物等都可以溶解;但金属氧化物、氢氧化物、碳酸盐、硫酸盐则几乎不溶。烯烃可溶,烷烃不溶,芳香烃除苯、甲苯、二甲苯之外难溶或不溶。低级的醇、酚和羧酸铵盐可溶。低级羧酸甲酯和乙酯虽然可以溶解,但会发生氨解反应。简单的醛、酮可溶,但与液氨发生反应;伯胺、酰胺、脒、吡啶、喹啉等含氮化合物以及硝基化合物也能溶解。糊精、旋复花粉、玉米朊、醋酸纤维素、硝化棉、聚乙烯醇、聚丙烯酰胺等高分子化合物也具有良好的溶解性。 2. 纯净的液氨化学性质稳定,可以长期贮存;在空气中不燃烧,但在氧气中能燃烧生成氮和氢,在催化剂存在下生成氧化氮。与卤素反应游离出氮气,与过量的氯反应生成氯化氮。液氨能与Cu、Cr、Ni、Co、铂族金属化合物生成加成化合物,并与其离子配位而形成络盐;这些络盐溶解于水呈碱性。液氨在水中以NH4OH分子或离解成离子存在。 3. 液氨接触皮肤时会迅速蒸发,导致冻伤;有水分存在时腐蚀性增大。急性毒性主要表现在对上呼吸道的刺激和腐蚀作用,高浓度时可引起中枢神经系统兴奋增强、痉挛,甚至心脏停搏和呼吸停止。轻度中毒症状包括鼻炎、咽炎、气管炎等,表现为咽灼痛、咳嗽、咳痰或咯血以及胸闷;严重中毒可能导致喉头水肿、声门狭窄及呼吸道黏膜脱落,从而引发气管阻塞和窒息。氨和氨水可使眼结膜水肿、角膜溃疡、虹膜炎,并导致晶体浑浊,甚至引起角膜穿孔。工作场所最高容许浓度为69.5mg/m³。 4. 稳定性:液氨稳定。 5. 避免与卤素、酰基氯、酸类、氯仿以及强氧化剂接触。 6. 不会发生聚合反应。
  • 自燃温度:
    1204 °F (651 °C)
  • 分解:
    Hazardous decomposition products formed under fire conditions. - Nitrogen oxides (NOx)
  • 粘度:
    0.475, 0.317, 0.276 and 0.255 cP at -69, -50, -40 and -33.5 °C, respectively
  • 腐蚀性:
    Corrosive gas
  • 燃烧热:
    382.8 kJ/mol (gas)
  • 汽化热:
    5.581 kcal/mol
  • 表面张力:
    23.4 dynes/cm at 11.1 °C; 18.1 dynes/cm at 34.1 °C
  • 电离电位:
    10.18 eV
  • 气味阈值:
    Odor Threshold Low: 0.04 [ppm]; Odor Threshold High: 53.0 [ppm]; Detection odor threshold from AIHA (mean = 17 ppm)
  • 折光率:
    Index of refraction: 1.3944 at -77 °C/D; 1.3327 at 20 °C/D
  • 解离常数:
    Aqueous ammonia: pKb 4.767, Kb 1.710X10-5 at 20 °C; pKb 4.751, Kb 1.774X10-5 at 25 °C; pKb 4.740, Kb 1.820X10-5 at 30 °C
  • 保留指数:
    118 ;131

计算性质

  • 辛醇/水分配系数(LogP):
    -0.7
  • 重原子数:
    1
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    1
  • 氢给体数:
    1
  • 氢受体数:
    1

ADMET

代谢
健康的肝细胞在解毒氨的过程中,肝谷氨酰胺酶、谷氨酰胺合成酶和尿素循环酶作为氨代谢的主要酶。氨在肝脏和其他组织中转化为尿素。谷氨酰胺酶和谷氨酰胺合成酶催化氨与谷氨酸缩合形成谷氨酰胺,谷氨酰胺是氨的一种常见的非毒性载体。在肝脏功能失调或损伤的情况下,解毒能力降低,可能会导致由高氨血症引起的严重病理变化,如肝性脑病。
Healthy hepatocytes detoxify ammonia where hepatic glutaminase, glutamine synthetase and the urea cycle enzymes act as major enzymes for ammonia metabolism. Ammonia is converted to urea in the liver and other tissues. Glutaminase and glutamine synthetase catalyze the condensation of ammonia with glutamate to glutamine, which is a common nontoxic carrier of ammonia. In case of hepatic dysfunction or impairment, detoxification capacity decreases and may cause severe pathologies from hyperammonemia, such as hepatic encephalopathy.
来源:DrugBank
代谢
成年人每天大约产生1000毫摩尔氨。其中一部分在生物合成中被再利用。其余的是废物且具有神经毒性。最终大部分以尿素的形式通过尿液排出体外,同时用作缓冲的氨也被排出。在肝脏外的组织中,氨被整合进无毒的谷氨酰胺并释放到血液中。大量的氨在肾脏和小肠中被代谢。在小肠中,这产生了氨,氨被隔离在门静脉血液中并运输到肝脏进行尿素生成,以及瓜氨酸,瓜氨酸通过肾脏转化为精氨酸。核磁共振成像和光谱学以及分子生物学的惊人发展,已经证实了早期动物和细胞培养研究中得出的概念。涉及的过程被精确调节。当这些过程出现故障时,氨就会积累。严重的急性高氨血症会导致快速进展的、常常是致命的脑病,伴有脑水肿。慢性轻度高氨血症会导致神经精神疾病。严重的新生儿高氨血症的幸存者会有结构性脑损伤。提出的脑水肿解释包括星形细胞渗透压的增加,通常归因于谷氨酰胺的积累,以及细胞毒性的氧化/氮化损伤。然而,氨的神经毒性是多因素的,还包括神经递质、能量产生、补充途径、脑血流、钾和钠的紊乱。大约90%的高氨血症患者有肝脏疾病。遗传缺陷是罕见的。它们在成年人中越来越多地被识别出来。尿素循环酶、柠檬酸和丙酮酸羧化酶的缺乏展示了孤立途径在氨代谢中的作用。苯丁酸通常用于治疗遗传性尿素循环障碍,其用于肝性脑病的研究正在进行中。/高氨血症/
Human adults produce around 1000 mmol of ammonia daily. Some is reutilized in biosynthesis. The remainder is waste and neurotoxic. Eventually most is excreted in urine as urea, together with ammonia used as a buffer. In extrahepatic tissues, ammonia is incorporated into nontoxic glutamine and released into blood. Large amounts are metabolized by the kidneys and small intestine. In the intestine, this yields ammonia, which is sequestered in portal blood and transported to the liver for ureagenesis, and citrulline, which is converted to arginine by the kidneys. The amazing developments in NMR imaging and spectroscopy and molecular biology have confirmed concepts derived from early studies in animals and cell cultures. The processes involved are exquisitely tuned. When they are faulty, ammonia accumulates. Severe acute hyperammonemia causes a rapidly progressive, often fatal, encephalopathy with brain edema. Chronic milder hyperammonemia causes a neuropsychiatric illness. Survivors of severe neonatal hyperammonemia have structural brain damage. Proposed explanations for brain edema are an increase in astrocyte osmolality, generally attributed to glutamine accumulation, and cytotoxic oxidative/nitrosative damage. However, ammonia neurotoxicity is multifactorial, with disturbances also in neurotransmitters, energy production, anaplerosis, cerebral blood flow, potassium, and sodium. Around 90% of hyperammonemic patients have liver disease. Inherited defects are rare. They are being recognized increasingly in adults. Deficiencies of urea cycle enzymes, citrin, and pyruvate carboxylase demonstrate the roles of isolated pathways in ammonia metabolism. Phenylbutyrate is used routinely to treat inherited urea cycle disorders, and its use for hepatic encephalopathy is under investigation. /Hyperammonemia/
来源:Hazardous Substances Data Bank (HSDB)
代谢
氨对两种不同甲烷生成途径的乙酸盐分解的抑制效果进行了评估,这两种途径分别由纯培养(Methanosaeta thermophila 菌株PT)和定义的共培养(Methanothermobacter thermautotrophicus 菌株TM和Thermacetogenium phaeum 菌株PB)代表,分别是乙酸盐裂解和共营甲烷生成。高浓度氨的生长实验清楚地表明,与共营共培养相比,M. thermophila PT对氨胁迫的敏感性明显更高。M. thermophila PT对高pH胁迫的敏感性也更高,这表明无法维持pH稳态是氨抑制的一个根本原因。在中等浓度氨的作用下,M. thermophila PT的静息细胞中的甲烷生成受到抑制,这表明参与甲烷生成的酶的抑制可能是氨毒性的主要因素之一。转录组学分析揭示了在氨胁迫条件下M. thermophila PT细胞中广泛的扰动,包括蛋白质变性、氧化应激和细胞内阳离子失衡。本研究的结果清楚地表明,在氨胁迫条件下,共营乙酸盐分解优于乙酸盐裂解甲烷生成,这与之前对复杂微生物群落系统的研究结果一致。我们的结果还暗示,多种代谢途径的共存及其对胁迫因素的不同敏感性赋予了甲烷生成过程恢复力。
The inhibitory effects of ammonia on two different degradation pathways of methanogenic acetate were evaluated using a pure culture (Methanosaeta thermophila strain PT) and defined co-culture (Methanothermobacter thermautotrophicus strain TM and Thermacetogenium phaeum strain PB), which represented aceticlastic and syntrophic methanogenesis, respectively. Growth experiments with high concentrations of ammonia clearly demonstrated that sensitivity to ammonia stress was markedly higher in M. thermophila PT than in the syntrophic co-culture. M. thermophila PT also exhibited higher sensitivity to high pH stress, which indicated that an inability to maintain pH homeostasis is an underlying cause of ammonia inhibition. Methanogenesis was inhibited in the resting cells of M. thermophila PT with moderate concentrations of ammonia, suggesting that the inhibition of enzymes involved in methanogenesis may be one of the major factors responsible for ammonia toxicity. Transcriptomic analysis revealed a broad range of disturbances in M. thermophila PT cells under ammonia stress conditions, including protein denaturation, oxidative stress, and intracellular cation imbalances. The results of the present study clearly demonstrated that syntrophic acetate degradation dominated over aceticlastic methanogenesis under ammonia stress conditions, which is consistent with the findings of previous studies on complex microbial community systems. Our results also imply that the co-existence of multiple metabolic pathways and their different sensitivities to stress factors confer resiliency on methanogenic processes.
来源:Hazardous Substances Data Bank (HSDB)
代谢
最近,建立了时空/代谢数学模型,允许模拟组织中的代谢过程。我们将这些模型应用于解析肝脏中氨解毒机制。利用整合的代谢-时空模型生成了氨代谢的假设。通过在小鼠诱导肝脏损伤后对氮代谢、活性分析、免疫染色和基因表达进行时间解析分析,验证了预测的机制。此外,以时间依赖性的方式分析了门静脉、肝静脉和混合静脉血。模型分析显示,仅在模拟当前建立的氨解毒机制时,会低估肝脏损伤后氨的消耗。通过模型和实验的迭代循环,确定了通过谷氨酸脱氢酶(GDH)将α-酮戊二酸(α-KG)还原为酰胺是缺失的组成部分。GDH从受损的肝细胞释放到血液中,在那里它消耗氨生成谷氨酸,从而提供对高氨血症的系统保护。在一种高氨血症的小鼠模型中,通过注射GDH和优化剂量的辅因子,利用了这一机制进行治疗。静脉注射GDH(720 U/kg)、α-KG(280 mg/kg)和NADPH(180 mg/kg)在仅15分钟内将升高的血氨浓度(>200 uM)降低到接近正常水平。如果成功转化为患者治疗,基于GDH的治疗可能为严重高氨血症患者提供一种更温和的治疗选择。/高氨血症/
Recently, spatial-temporal/metabolic mathematical models have been established that allow the simulation of metabolic processes in tissues. We applied these models to decipher ammonia detoxification mechanisms in the liver. An integrated metabolic-spatial-temporal model was used to generate hypotheses of ammonia metabolism. Predicted mechanisms were validated using time-resolved analyses of nitrogen metabolism, activity analyses, immunostaining and gene expression after induction of liver damage in mice. Moreover, blood from the portal vein, liver vein and mixed venous blood was analyzed in a time dependent manner. Modeling revealed an underestimation of ammonia consumption after liver damage when only the currently established mechanisms of ammonia detoxification were simulated. By iterative cycles of modeling and experiments, the reductive amidation of alpha-ketoglutarate (alpha-KG) via glutamate dehydrogenase (GDH) was identified as the lacking component. GDH is released from damaged hepatocytes into the blood where it consumes ammonia to generate glutamate, thereby providing systemic protection against hyperammonemia. This mechanism was exploited therapeutically in a mouse model of hyperammonemia by injecting GDH together with optimized doses of cofactors. Intravenous injection of GDH (720 U/kg), alpha-KG (280 mg/kg) and NADPH (180 mg/kg) reduced the elevated blood ammonia concentrations (>200 uM) to levels close to normal within only 15 min. If successfully translated to patients the GDH-based therapy might provide a less aggressive therapeutic alternative for patients with severe hyperammonemia. /Hyperammonemia/
来源:Hazardous Substances Data Bank (HSDB)
代谢
啮齿动物肝脏消除有毒氨。在哺乳动物中,有三个酶(或酶系统)参与这一过程:谷氨酰胺酶、谷氨酰胺合成酶和尿素循环酶,后者由碳酸酐磷酸合成酶代表。这些酶的最优分布是为了实现氨的最佳解毒,通过数值优化确定。这种计算机模拟方法预测,为了实现有毒氨的最大去除和谷氨酰胺浓度最小的变化,这些酶必须进行区域化分布。使用代表肝细胞的13个隔室,产生了以下预测:谷氨酰胺合成酶仅在狭窄的中央区带内活跃。谷氨酰胺酶和碳酸酐磷酸合成酶分布在门脉区,分布不均匀。这与观察到的悖论现象相符,即尽管肝脏的一个功能是通过氨固定进行解毒,但在第一步中氨(通过谷氨酰胺酶)被释放。计算机模拟方法正确预测了非生理条件(例如饥饿)和四氯化碳(CCl4)中毒后再生过程中的体内酶分布。预测了代表单个肝细胞的每个隔室中的谷氨酰胺、氨和尿素的代谢物浓度。最后,敏感性分析显示结果具有显著的稳健性。这些生物信息学预测通过免疫组织化学实验得到验证,并得到了文献的支持。总之,像这种应用的优化方法可以为体内组织中的酶和代谢物分布提供有价值的解释和高品质的预测,并可以揭示未知的代谢功能。
The rodent liver eliminates toxic ammonia. In mammals, three enzymes (or enzyme systems) are involved in this process: glutaminase, glutamine synthetase and the urea cycle enzymes, represented by carbamoyl phosphate synthetase. The distribution of these enzymes for optimal ammonia detoxification was determined by numerical optimization. This in silico approach predicted that the enzymes have to be zonated in order to achieve maximal removal of toxic ammonia and minimal changes in glutamine concentration. Using 13 compartments, representing hepatocytes, the following predictions were generated: glutamine synthetase is active only within a narrow pericentral zone. Glutaminase and carbamoyl phosphate synthetase are located in the periportal zone in a non-homogeneous distribution. This correlates well with the paradoxical observation that in a first step glutamine-bound ammonia is released (by glutaminase) although one of the functions of the liver is detoxification by ammonia fixation. The in silico approach correctly predicted the in vivo enzyme distributions also for non-physiological conditions (e.g. starvation) and during regeneration after tetrachloromethane (CCl4) intoxication. Metabolite concentrations of glutamine, ammonia and urea in each compartment, representing individual hepatocytes, were predicted. Finally, a sensitivity analysis showed a striking robustness of the results. These bioinformatics predictions were validated experimentally by immunohistochemistry and are supported by the literature. In summary, optimization approaches like the one applied can provide valuable explanations and high-quality predictions for in vivo enzyme and metabolite distributions in tissues and can reveal unknown metabolic functions.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
氨是一种无色气体或液体。氨用于生产硫酸铵和硝酸钠肥料;在制造硝酸、苏打、合成尿素、合成纤维、染料和塑料中也有应用。氨或解离氨用于金属处理操作,如氮化、碳氮共渗、光亮退火、炉焊、烧结、钠氢化物去鳞、原子氢焊接,以及其他需要保护气氛的应用。石油工业使用无水氨中和原油的酸性成分,并保护设备如泡沫塔板、热交换器、冷凝器和储罐免受腐蚀。它也用作药物。在水环境中,氨在离子化的铵阳离子和非离子化的氨之间处于平衡状态。这种平衡可能受到缓冲剂、pH值、温度和盐度的影响。因此,在许多情况下,无法将相关毒性归因于氨氮的离子化或非离子化形式。人类暴露和毒性:使用低水平氨的研究表明,吸入的氨暂时溶解在上呼吸道的粘液中,然后其中很大一部分会释放回呼出的空气中。在500 ppm氨中暴露10-27分钟后,健康的男性受试者通过此途径排除了吸入氨的70-80%。短期暴露:眼睛或皮肤接触氨可能导致刺激、烧伤、冻伤(无水)和永久性损伤。刺激呼吸道,导致咳嗽、喘息和呼吸急促。更高暴露可能导致肺水肿,这是一种医疗紧急情况,可能会延迟数小时,并且是危及生命的。暴露可能导致头痛、嗅觉丧失、恶心和呕吐。吸入:在72 ppm下5分钟暴露后,有报告称鼻和喉咙刺激。500 ppm暴露30分钟已导致上呼吸道刺激、流泪、脉搏率和血压升高。在未知持续时间的10,000 ppm暴露后,有报告称死亡。皮肤:2%氨溶液在15分钟暴露后可能导致烧伤和水疱。这些烧伤可能愈合缓慢。无水氨可能导致皮肤冻结。眼睛:70 ppm(气体)的水平已导致眼睛刺激。如果不立即用水冲洗,接触眼睛可能导致部分或完全失明。摄入:氨如果吞下会导致疼痛和喉咙和胃灼伤。可能导致呕吐。一茶匙28%的水合氨可能导致死亡。长期暴露:重复暴露可能导致慢性眼、鼻和喉咙刺激。反复肺刺激可能导致咳嗽、呼吸急促和痰的支气管炎。对22名暴露于氨的化肥厂工人和42名未暴露于氨的控制工人的血样分析显示,染色体畸变(CAs)和姐妹染色单体交换(SCEs)的频率增加,有丝分裂指数(MI)增加,随着暴露时间的增加,CAs和SCEs的频率也在增加。动物研究:对大鼠呼出空气中的内源性氨水平进行分析,发现鼻呼吸动物中的浓度范围为10-353 ppb(平均值为78 ppb)。吸入和呼出氨之间的定量差异表明,少量氨通过鼻咽膜吸收进入系统循环。吸收的氨通过肾脏以尿素和尿铵化合物的形式排出,以尿素的形式排出粪便,以及作为汗液的组成部分。由于身体有多种有效的解毒和排泄机制,因此慢性吸入暴露不会导致毒性水平的发展。在高浓度氨暴露下,兔子的心血管变化可能与人类观察到的相似。在2,500 ppm时观察到心动过缓,急性暴露于超过5,000 ppm的浓度后,出现高血压和心脏心律失常,导致心血管崩溃。这些影响的病理相关性尚未得到证实。在暴露于4,000 ppm氨的小鼠中观察到心包脂肪萎缩。肝脏效应通常不会在暴露于氨气的动物中看到。在小鼠急性致死暴露于3,440 ppm氨1小时后观察到肝脏坏死。170 ppm的氨蒸气在大鼠的脾脏、肾脏和肝脏中引起了轻微的变化。将猫和兔子静态暴露于1小时7000 mg/立方米的氨中,导致约50%死亡。尸检显示上呼吸道受到严重影响。下呼吸道的影响较轻,包括支气管损伤和肺泡充血、水肿、肺不张、出血、肺气肿和液体。寻找导致肝性脑病中存在的中枢神经系统损伤的外周毒素的研究表明,给正常大鼠注射氨可以复制与半乳糖胺诱导的脑病相似的行为和电生理学变化。在暴露于大约7或35 ppm氨6周的猪中,卵巢或子宫重量没有统计学上的显著差异。从6周前繁殖到妊娠第30天,连续暴露于大约35 ppm氨的母猪与仅暴露于大约7 ppm的母猪相比,青春期年龄、活胎儿数量或胎儿-黄体比率没有统计学上的显著差异。该研究没有包括未暴露的对照组。在妊娠第30天,连续暴露于大约7或35 ppm氨的母猪的后代胎儿长度没有统计学上的显著差异。在Ames试验中,对无水氨的诱变性进行了调查S. typhimurium TA98, TA100, TA1535,
IDENTIFICATION AND USE: Ammonia is a colorless gas or liquid. Ammonia is used in the production of ammonium sulfate and ammonium nitrate for fertilizers; and in the manufacture of nitric acid, soda, synthetic urea, synthetic fibers, dyes, and plastics. Ammonia, or dissociated ammonia, is used in such metal treating operations as nitriding, carbo-nitriding, bright annealing, furnace brazing, sintering, sodium hydride descaling, atomic hydrogen welding, and other applications where protective atmospheres are required. The petroleum industry utilizes anhydrous ammonia in neutralizing the acid constituents of crude oil and in protecting equipment such as bubble plate towers, heat exchangers, condensers, and storage tanks from corrosion. It is also used as medication. Ammonia in an aqueous environment exists in equilibrium between ionized ammonium cation and the non-ionized ammonia. This equilibrium can be affected by buffers, pH, temperature, and salinity. Thus, in many cases it is not possible to assign the associated toxicity to the ionized or non-ionized form of the ammonia-nitrogen. HUMAN EXPOSURE AND TOXICITY: Studies using low levels of ammonia show that inhaled ammonia is temporarily dissolved in the mucus of the upper respiratory tract, and then a high percentage of it is released back into the expired air. Following exposure to 500 ppm ammonia for 10-27 min, healthy male subjects eliminated 70-80% of the inspired ammonia by this route. Short term exposure: eye or skin contact with ammonia can cause irritation, burns, frostbite (anhydrous), and permanent damage. Irritates the respiratory tract causing coughing, wheezing, and shortness of breath. Higher exposure can cause pulmonary edema, a medical emergency, that can be delayed for several hours and is life-threatening. Exposure can cause headache, loss of sense of smell, nausea, and vomiting. Inhalation: nose and throat irritation have been reported at 72 ppm after 5 min exposure. Exposures of 500 ppm for 30 min have caused upper respiratory irritation, tearing, increased pulse rate, and blood pressure. Death has been reported after an exposure to 10,000 ppm for an unknown duration. Skin: Solutions of 2% ammonia can cause burns and blisters after 15 min of exposure. These burns may be slow to heal. Anhydrous ammonia may cause skin to freeze. Eyes: Levels of 70 ppm (gas) have caused eye irritation. If not flushed with water immediately, contact with eye may cause partial or complete blindness. Ingestion: ammonia will cause pain if swallowed and burning of the throat and stomach. May cause vomiting. One teaspoon of 28% aqua ammonia may cause death. Long term exposure: repeated exposure can cause chronic eye, nose, and throat irritation. Repeated lung irritation can result in bronchitis with coughing, shortness of breath, and phlegm. Analysis of blood samples from 22 workers exposed to ammonia in a fertilizer factory and 42 control workers not exposed to ammonia showed increased frequency of chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs), increased mitotic index (MI), and increased frequency of CAs and SCEs with increasing length of exposure. ANIMAL STUDIES: Analysis of endogenous ammonia levels in the expired air of rats showed concentrations ranging from 10-353 ppb (mean = 78 ppb) in nose-breathing animals. The quantitative difference between inspired and expired ammonia suggests that small amounts are absorbed across the nasopharyngeal membranes into the systemic circulation. Absorbed ammonia is excreted by the kidneys as urea and urinary ammonium compounds, as urea in feces, and as components of sweat. Toxic levels do not develop as a result of chronic inhalation exposure because the body has multiple effective mechanisms for detoxifying and excreting it. Cardiovascular changes that may be analogous to those observed in humans have been observed in rabbits exposed to high concentrations of ammonia. Bradycardia was seen at 2,500 ppm, and hypertension and cardiac arrhythmias leading to cardiovascular collapse followed acute exposures to concentrations exceeding 5,000 ppm. Pathological correlates for these effects have not been demonstrated. Atrophy of pericardial fat has been observed in mice exposed to 4,000 ppm ammonia. Hepatic effects are usually not seen in animals exposed to ammonia gas. Liver necrosis has been observed following acute lethal exposure of mice to 3,440 ppm ammonia for 1 hour. Levels of 170 ppm of ammonia vapor caused mild changes in the spleens, kidneys, and livers of guinea pigs. Static exposures of cats and rabbits for 1 hr at 7000 mg/cu m resulted in the death of approx 50%. Postmortem exam showed severe effects on the upper respiratory tract. Less severe effects in the lower respiratory tract included damage to bronchioles and alveolar congestion, edema, atelectasis, hemorrhage, emphysema, and fluid. The search for the peripheral toxins responsible for the CNS impairment present in hepatic encephalopathy has shown that the administration of ammonia in normal rats reproduced behavioral and electrophysiological changes similar to those seen in galactosamine induced encephalopathy. No statistically significant differences were noted in ovarian or uterine weights of pigs exposed to about 7 or 35 ppm ammonia for 6 weeks. Female pigs that were continuously exposed to about 35 ppm ammonia from 6 weeks before breeding until day 30 of gestation had no statistically significant differences in age at puberty, number of live fetuses, or fetus-to-corpus luteum ratio compared to pigs exposed to only about 7 ppm. No unexposed controls were included in that study. No statistically significant difference in fetal length was evident at 30 days of gestation in offspring of pig dams that were continuously exposed to about 7 or 35 ppm ammonia from 6 weeks before breeding until day 30 of gestation. The mutagenicity of anhydrous ammonia was investigated in a Ames test in S. typhimurium TA98, TA100, TA1535, TA1537 and TA1538, and in E. coli WP2uvrA. The test method was modified appropriately to investigate a volatile test substance. Studies were performed in duplicate in the presence and absence of an exogenous metabolic activation system. No evidence of mutagenicity was seen under the conditions of this assay. ECOTOXICITY STUDIES: Ammonia is an environmental pollutant that is toxic to all aquatic animals. The major sources for atmospheric NH3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH3 can result in visible foliar injury on vegetation.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
氨对组织的损伤可能主要由于其碱性特性。它的高水溶性使其能够溶解在粘膜、皮肤和眼睛上的水分中,形成氨水。氨水导致细胞膜脂类的皂化,结果是细胞破坏和死亡。此外,它从细胞中提取水分并引发炎症反应,这进一步损害了周围组织。过量的氨循环水平(高氨血症)可能导致严重的神经学影响。这被认为涉及大脑中谷氨酸代谢的改变和随后NMDA受体的激活增加,这导致蛋白激酶C介导的Na+/K+ ATP酶的磷酸化减少,Na+/K+ ATP酶活性增加和ATP的耗尽。氨可以与补体3(C3)内部的硫代酯键发生化学反应。这导致C3构象的改变,激活替代补体途径,导致吸引剂的释放和补体膜攻击复合物的组装。改变的C3也可以直接与吞噬细胞补体受体结合,导致有毒氧种类的释放。
The topical damage caused by ammonia is probably due mainly to its alkaline properties. Its high water solubility allows it to dissolve in moisture on the mucous membranes, skin, and eyes, forming ammonium hydroxide. Ammonium hydroxide causes saponification of cell membrane lipids, resulting in cell disruption and death. Additionally, it extracts water from the cells and initiates an inflammatory response, which further damages the surrounding tissues. Excess circulating levels of ammonia (hyperammonemia) can cause serious neurological effects. This is thought to involve the alteration of glutamate metabolism in the brain and resultant increased activation of NMDA receptors, which causes decreased protein kinase C-mediated phosphorylation of Na+/K+ ATPase, increased activity of Na+/K+ ATPase, and depletion of ATP. Ammonia can chemically interact with an internal thiolester bond of complement 3 (C3). This causes a conformation change in C3, which activates the alternative complement pathway, causing the release of chemoattractants and the assembly of the membrane attack complex of complement. The altered C3 can also bind directly to phagocyte complement receptors, which causes the release of toxic oxygen species. (L958)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌物分类
对人类无致癌性(未列入国际癌症研究机构IARC清单)。
No indication of carcinogenicity to humans (not listed by IARC).
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 健康影响
急性暴露于高浓度的空气中的氨可能会刺激皮肤、眼睛、喉咙和肺部,导致咳嗽和烧伤。在接触到非常高的氨浓度后,可能会发生肺损伤和死亡。吞食浓缩的氨溶液可能会导致口腔、喉咙和胃部烧伤。氨溅入眼睛可能会造成烧伤,甚至失明。 血液中持续高水平的氨与近20种不同的遗传代谢错误有关,包括:3-羟基-3-甲基戊二酸辅酶A裂合酶缺乏症、精氨酸血症、精氨酸琥珀酸尿症、β-酮硫解酶缺乏症、生物素酶缺乏症、碳酸磷酸合成酶缺乏症、肉碱-酰基肉碱转移酶缺乏症、瓜氨酸血症I型、高胰岛素血症-高氨血症综合征、高鸟氨酸血症-高氨血症-同瓜氨酸尿综合征、异戊酸尿症、赖氨酸尿蛋白不耐受症、丙酸尿症、甲基丙二酸尿症、由于钴胺素相关疾病引起的甲基丙二酸尿症、丙酸血症、丙酮酸羧化酶缺乏症和短链酰基辅酶A脱氢酶缺乏症(SCAD缺乏症)。高氨血症是导致肝性脑病的代谢紊乱之一。
Acute exposure to high levels of ammonia in air may be irritating to skin, eyes, throat, and lungs and cause coughing and burns. Lung damage and death may occur after exposure to very high concentrations of ammonia. Swallowing concentrated solutions of ammonia can cause burns in mouth, throat, and stomach. Splashing ammonia into eyes can cause burns and even blindness. (L958) Chronically high levels of ammonia in the blood are associated with nearly 20 different inborn errors of metabolism including: 3-Hydroxy-3-Methylglutaryl-CoA Lyase Deficiency, Argininemia, Argininosuccinic Aciduria, Beta-Ketothiolase Deficiency, Biotinidase deficiency, Carbamoyl Phosphate Synthetase Deficiency, Carnitine-acylcarnitine translocase deficiency, Citrullinemia Type I, Hyperinsulinism-Hyperammonemia Syndrome, Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome, Isovaleric Aciduria, Lysinuric Protein Intolerance, Malonic Aciduria, Methylmalonic Aciduria, Methylmalonic Aciduria Due to Cobalamin-Related Disorders, Propionic acidemia, Pyruvate carboxylase deficiency and Short Chain Acyl CoA Dehydrogenase Deficiency (SCAD Deficiency). Hyperammonemia is one of the metabolic derangements that contribute to hepatic encephalopathy.
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 暴露途径
这种物质可以通过吸入被身体吸收。
The substance can be absorbed into the body by inhalation.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
吸收、分配和排泄
  • 吸收
氨可以通过口服或吸入途径被吸收。吸入的氨暂时溶解在上呼吸道的粘液中,然而大部分气体通过呼气释放回空气中。在健康的男性受试者暴露于500 ppm氨10-27分钟的情况下,大约70-80%的总吸入氨被呼出。在肝脏外的组织中,如肠道,氨被结合成无毒的谷氨酰胺并释放到血液中,然后被运输到肝脏进行尿素生成。
Ammonia can be absorbed via oral or inhalation route. Inhales ammonia is temporarily dissolved in the mucus of the upper respiratory tract, however the majority of the gas is released back into the air via expiration. In healthy male subjects under exposure to 500 ppm ammonia for 10-27 minutes, about 70-80% of total inspired ammonia was expired. In extrahepatic tissues such as the intestine, ammonia is incorporated into nontoxic glutamine and released into blood, where it is transported to the liver for ureagenesis.
来源:DrugBank
吸收、分配和排泄
  • 消除途径
它主要通过呼出的空气或肾脏排泄来排出体外。
It is mainly excreted through expired air or renal elimination.
来源:DrugBank
吸收、分配和排泄
研究表明,氨可以通过吸入和口服途径暴露被吸收,但关于通过皮肤吸收的不确定性较大。已经记录了通过眼睛吸收氨的情况。大多数吸入的氨在上呼吸道中被保留,并随后随呼出的空气排出。在肠内产生的内源性氨几乎全部被吸收。外源性氨也容易在肠道中被吸收。达到循环的氨广泛分布到身体的各个部位,尽管在肝脏发生了大量的首次通过代谢,将其转化为尿素和谷氨酰胺。到达组织的氨或铵离子被谷氨酸吸收,参与转氨和其他反应。哺乳动物血液循环中达到的氨的主要排泄途径是尿液中的尿素;少量通过粪便和呼出的空气排出。
Studies suggest that ammonia can be absorbed by the inhalation and oral routes of exposure, but there is less certainty regarding absorption through the skin. Absorption through the eye has been documented. Most of the inhaled ammonia is retained in the upper respiratory tract and is subsequently eliminated in expired air. Almost all of the ammonia produced endogenously in the intestinal tract is absorbed. Exogenous ammonia is also readily absorbed in the intestinal tract. Ammonia that reaches the circulation is widely distributed to all body compartments although substantial first pass metabolism occurs in the liver where it is transformed into urea and glutamine. Ammonia or ammonium ion reaching the tissues is taken up by glutamic acid, which participates in transamination and other reactions. The principal means of excretion of ammonia that reaches the circulation in mammals is as urinary urea; minimal amounts are excreted in the feces and in expired air.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
志愿者实验表明,无论氨在空气中的测试浓度如何(范围,57-500 ppm),在短期暴露期间,即最多120秒内,氨几乎完全保留在鼻粘膜中(83-92%)。然而,较长期暴露(10-27分钟)于500 ppm的浓度导致较低的保留率(4-30%),在暴露期结束时,350-400 ppm通过呼出的空气被消除,这表明吸收过程具有适应性能力或饱和。鼻腔和咽部刺激,但没有气管刺激,表明氨在上呼吸道中被保留。血液尿素氮(BUN)、非蛋白氮、尿尿素和尿氨水平未改变是血液吸收低的证据。暴露于空气中氨的职业限值(25 ppm)并保留30%(并假设这部分被吸收进入血液)将导致血液氨浓度增加0.09 mg/L。这个计算出的升高只比禁食水平高出10%。
Experiments with volunteers show that ammonia, regardless of its tested concentration in air (range, 57-500 ppm), is almost completely retained in the nasal mucosa (83-92%) during short-term exposure, i.e., up to 120 sec. However, longer-term exposure (10-27 min) to a concentration of 500 ppm resulted in lower retention (4-30%), with 350-400 ppm eliminated in expired air by the end of the exposure period, suggesting an adaptive capability or saturation of the absorptive process. Nasal and pharyngeal irritation, but not tracheal irritation, suggests that ammonia is retained in the upper respiratory tract. Unchanged levels of blood-urea-nitrogen (BUN), non-protein nitrogen, urinary-urea, and urinary-ammonia are evidence of low absorption into the blood. Exposure to common occupational limits of ammonia in air (25 ppm) with 30% retention (and assuming this quantity is absorbed into the blood stream) would yield an increase in blood ammonium concentration of 0.09 mg/L. This calculated rise is only 10% above fasting levels.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
动物数据为高百分比鼻腔滞留提供了支持性证据,从而保护了下呼吸道不受暴露(兔、狗)。将大鼠连续暴露于高达32 ppm的浓度24小时,导致血液氨水平显著增加。暴露于310-1,157 ppm的浓度,在开始暴露后的8小时内导致血液中氨浓度显著增加,但在连续暴露12小时后血液氨水平恢复到暴露前值,并在剩余的24小时暴露期间保持如此。这表明,随着长期暴露,可能激活了一种适应性响应机制。
Animal data provide supporting evidence for high-percentage nasal retention, thus protecting the lower respiratory tract from exposure (rabbit, dog). Continuous exposure of rats for 24 hr to concentrations up to 32 ppm resulted in significant increase in blood ammonia levels. Exposures to 310-1,157 ppm led to significantly increased blood concentrations of ammonia within 8 hr of exposure initiation, but blood ammonia returned to pre-exposure values within 12 hr of continuous exposure and remained so over the remaining of the 24 hr exposure period. This suggests an adaptive response mechanism may be activated with longerterm exposure.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 职业暴露等级:
    A
  • 职业暴露限值:
    TWA: 25 ppm (18 mg/m3), STEL: 35 ppm (27 mg/m3)
  • TSCA:
    Yes
  • 危险等级:
    3
  • 立即威胁生命和健康浓度:
    300 ppm
  • 安全说明:
    S16,S26,S36/37/39,S45,S61,S7,S9
  • 危险品运输编号:
    UN 1219 3/PG 2
  • WGK Germany:
    2
  • 海关编码:
    2814100000
  • 危险类别:
    3
  • 危险品标志:
    F
  • 危险类别码:
    R36/37/38,R10,R11,R23/24/25,R39/23/24/25
  • RTECS号:
    BO0875000
  • 包装等级:
    II
  • 危险标志:
    GHS02,GHS07,GHS08
  • 危险性描述:
    H221,H280,H314,H331,H410
  • 危险性防范说明:
    P210,P261,P273,P281,P305 + P351 + P338
  • 储存条件:
    储存于阴凉、干燥、通风的有毒气体专用库房,远离火种、热源,库温不宜超过30℃。应与氧化剂、酸类、卤素及食用化学品分开存放,切忌混储。采用防爆型照明和通风设施,并禁止使用易产生火花的机械设备和工具。储存区域应配备泄漏应急处理设备。

SDS

SDS:d8ac211f62e0d3d625f3884c6a6ccbb7
查看
第一部分:化学品名称
化学品中文名称: 氨;氨气(液氨)
化学品英文名称: ammonia
中文俗名或商品名:
Synonyms:
CAS No.: 7664-41-7
分子式: NH 3
分子量: 17.03
第二部分:成分/组成信息
纯化学品 混合物
化学品名称:氨;氨气(液氨)
有害物成分 含量 CAS No.
无资料 无资料 无资料
第三部分:危险性概述
危险性类别:
侵入途径: 无资料
健康危害: 低浓度氨对粘膜有刺激作用,高浓度可造成组织溶解坏死。急性中毒:轻度者出现流泪、咽痛、声音嘶哑、咳嗽、咯痰等;眼结膜、鼻粘膜、咽部充血、水肿;胸部 X线征象符合支气管炎或支气管周围炎。中度中毒上述症状加剧,出现呼吸困难、紫绀;胸部 X线征象符合肺炎或间质性肺炎。严重者可发生中毒性肺水肿,或有呼吸窘迫综合征,患者剧烈咳嗽、咯大量粉红色泡沫痰、呼吸窘迫、谵妄、昏迷、休克等。可发生喉头水肿或支气管粘膜坏死脱落窒息。高浓度氨可引起反射性呼吸停止。液氨或高浓度氨可致眼灼伤;液氨可致皮肤灼伤。
环境危害: 对环境有严重危害,对水体、土壤和大气可造成污染。
燃爆危险: 本品易燃,有毒,具刺激性。
第四部分:急救措施
皮肤接触: 立即脱去污染的衣着,应用2%硼酸液或大量清水彻底冲洗。就医。
眼睛接触: 立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。
吸入: 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。
食入: 无资料
第五部分:消防措施
危险特性: 与空气混合能形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。与氟、氯等接触会发生剧烈的化学反应。若遇高热,容器内压增大,有开裂和爆炸的危险。
有害燃烧产物: 氧化氮、氨。
灭火方法及灭火剂: 灭火剂:雾状水、抗溶性泡沫、二氧化碳、砂土。
消防员的个体防护: 消防人员必须穿全身防火防毒服,在上风向灭火。切断气源。若不能切断气源,则不允许熄灭泄漏处的火焰。喷水冷却容器,可能的话将容器从火场移至空旷处。
禁止使用的灭火剂: 无资料
闪点(℃): 无资料
自燃温度(℃): 651
爆炸下限[%(V/V)]: 15.7
爆炸上限[%(V/V)]: 27.4
最小点火能(mJ):
爆燃点:
爆速:
最大燃爆压力(MPa):
建规火险分级:
第六部分:泄漏应急处理
应急处理: 迅速撤离泄漏污染区人员至上风处,并立即隔离150m,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。尽可能切断泄漏源。合理通风,加速扩散。高浓度泄漏区,喷含盐酸的雾状水中和、稀释、溶解。构筑围堤或挖坑收容产生的大量废水。如有可能,将残余气或漏出气用排风机送至水洗塔或与塔相连的通风橱内。储罐区最好设稀酸喷洒设施。漏气容器要妥善处理,修复、检验后再用。
第七部分:操作处置与储存
操作注意事项: 严加密闭,提供充分的局部排风和全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防静电工作服,戴橡胶手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止气体泄漏到工作场所空气中。避免与氧化剂、酸类、卤素接触。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急处理设备。
储存注意事项: 储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。应与氧化剂、酸类、卤素、食用化学品分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备。
第八部分:接触控制/个体防护
最高容许浓度: TLVTN: OSHA 50ppm,34mg/m3; ACGIH 25ppm,17mg/m3 ;TLVWN: ACGIH 35ppm,24mg/m3
监测方法: 纳氏试剂比色法
工程控制: 严加密闭,提供充分的局部排风和全面通风。提供安全淋浴和洗眼设备。
呼吸系统防护: 空气中浓度超标时,建议佩戴过滤式防毒面具(半面罩)。紧急事态抢救或撤离时,必须佩戴空气呼吸器。
眼睛防护: 戴化学安全防护眼镜。
身体防护: 穿防静电工作服。
手防护: 无资料
其他防护: 工作现场禁止吸烟、进食和饮水。工作完毕,淋浴更衣。保持良好的卫生习惯。
第九部分:理化特性
外观与性状: 无色、有刺激性恶臭的气体。
pH:
熔点(℃): -77.7
沸点(℃): -33.5
相对密度(水=1): 0.82(-79℃)
相对蒸气密度(空气=1): 0.6
饱和蒸气压(kPa): 506.62(4.7℃)
燃烧热(kJ/mol):
临界温度(℃): 132.5
临界压力(MPa): 11.40
辛醇/水分配系数的对数值:
闪点(℃): 无资料
引燃温度(℃): 651
爆炸上限%(V/V): 27.4
爆炸下限%(V/V): 15.7
分子式: NH 3
分子量: 17.03
蒸发速率:
粘性:
溶解性: 易溶于水、乙醇、乙醚。
主要用途: 用作致冷剂及制取铵盐和氮肥。
第十部分:稳定性和反应活性
稳定性: 在常温常压下
禁配物: 卤素、酰基氯、酸类、氯仿、强氧化剂。
避免接触的条件: 无资料
聚合危害: 无资料
分解产物: 无资料
第十一部分:毒理学资料
急性毒性: LD50:350 mg/kg(大鼠经口) LC50:1390mg/m3,4小时(大鼠吸入)
急性中毒: 无资料
慢性中毒: 无资料
亚急性和慢性毒性:
刺激性: 家兔经眼: 100mg,重度刺激。
致敏性:
致突变性:
致畸性:
致癌性:
第十二部分:生态学资料
生态毒理毒性: 无资料
生物降解性: 无资料
非生物降解性: 无资料
生物富集或生物积累性:
第十三部分:废弃处置
废弃物性质: 无资料
废弃处置方法: 先用水稀释,再加盐酸中和,然后放入废水系统。
废弃注意事项: 无资料
第十四部分:运输信息
危险货物编号: 23003
UN编号: 1005
包装标志:
包装类别:
包装方法: 钢质气瓶。
运输注意事项: 本品铁路运输时限使用耐压液化气企业自备罐车装运,装运前需报有关部门批准。采用刚瓶运输时必须戴好钢瓶上的安全帽。钢瓶一般平放,并应将瓶口朝同一方向,不可交叉;高度不得超过车辆的防护栏板,并用三角木垫卡牢,防止滚动。运输时运输车辆应配备相应品种和数量的消防器材。装运该物品的车辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。严禁与氧化剂、酸类、卤素、食用化学品等混装混运。夏季应早晚运输,防止日光曝晒。中途停留时应远离火种、热源。公路运输时要按规定路线行驶,禁止在居民区和人口稠密区停留。铁路运输时要禁止溜放。
RETCS号:
IMDG规则页码:
第十五部分:法规信息
国内化学品安全管理法规: 化学危险物品安全管理条例 (1987年2月17日国务院发布),化学危险物品安全管理条例实施细则 (化劳发[1992] 677号),工作场所安全使用化学品规定 ([1996]劳部发423号)等法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定;常用危险化学品的分类及标志 (GB 13690-92)将该物质划为第2.3 类有毒气体。
国际化学品安全管理法规:
第十六部分:其他信息
参考文献:
填表时间: 2005年1月17日
填表部门: 无资料
数据审核单位: 无资料
修改说明: 无资料
其他信息:
MSDS修改日期: 1900年1月1日

制备方法与用途

氨气NH₃

氨气,又称阿摩尼亚,是一种具有刺激性气味的无色有毒气体。比空气轻、弱碱性、沸点较低且极易溶于水。在高温时会分解成氮气和氢气,并具备还原作用。可由氮和氢直接合成而制得。在工业中常被用于制造液氨、氨水、硝酸、铵盐和胺类等。

来源

氨气是一种具有强烈刺激性臭味的无色气体,主要来源于畜禽舍内两方面:一是粪尿、胃肠消化物等中的氨气;二是有机物(如垫料)腐败分解产生的氨。在潮湿、酸碱度适宜且温度高、通风不良的情况下,氨气产生更快。

畜禽舍内的氨气浓度取决于舍内温度、饲养密度、通风情况、地面结构、管理水平和粪污清除状况。由于氨气易溶于水,在圈舍湿度较大时氨气浓度相对较高。

用途
  1. 氨气通过氧化制造硝酸,而硝酸是重要的化工原料。
  2. 制造化肥。
  3. 用于制液氨、氨水、硝酸、铵盐和胺类等。
  4. 用作冷冻剂。
  5. 用于肥料,并广泛应用于医药领域。
  6. 主要用作大规模集成电路减压或等离子体CVD,以生长二氧化硅膜。
  7. 用于化工、食品、医药等行业。
浓度鉴别
  • 若闻到有氨气气味但不刺眼、不刺鼻,其浓度大致在15~20ppm左右。
  • 当感觉到刺鼻流泪时,其浓度大致在30~40ppm之间。
  • 当感到呼吸困难,睁不开眼时,其浓度可达到70 ppm以上。
水中溶解度(g/100ml)

不同温度(℃)时每100毫升水中的溶解克数: 88.5g/0℃; 70g/10℃; 56g/20℃; 44.5g/30℃; 34g/40℃; 26.5g/50℃; 20g/60℃; 15g/70℃; 11g/80℃; 8g/90℃; 7g/100℃

化学性质
  • 无色气体,有强烈的刺激气味。
  • 溶于水、乙醇和乙醇。
使用领域

氨气用于化工、食品、医药等工业,并广泛应用于肥料制造及制药行业。此外,在半导体行业中主要用于大规模集成电路减压或等离子体CVD,以生长二氧化硅膜。

类别与危险性
  • 类别: 有害气体
  • 毒性分级: 高毒
  • 急性毒性: 吸入- 大鼠 LC₅₀:2000 PPM/4小时; 吸入- 小鼠 LC₅₀:4230 PPM/1小时
  • 爆炸物危险特性: 受热、日晒或撞击钢瓶可爆;泄漏时释放剧毒气体,可能发生爆炸。
  • 可燃性危险特性: 在空气中明火可燃;遇水生成有腐蚀性的氨水;燃烧产生有毒氮氧化物和氨气。
  • 储运特性: 库房通风低温干燥;轻装轻卸
  • 灭火剂: 切断气源,使用雾状水或泡沫扑灭
职业标准
  • 时间加权平均容许浓度(TWA): 18 毫克/立方米
  • 短时间接触容许浓度(STEL): 27 毫克/立方米

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
    盐酸 hydrogenchloride 7647-01-0 ClH 36.4609
    water 7732-18-5 H2O 18.0153
    氢碘酸 hydrogen iodide 10034-85-2 HI 127.912
    —— calcium 7440-70-2 Ca 40.078
    氢气 hydrogen 1333-74-0 H2 2.01588
    甲烷 pyrographite 74-82-8 C 12.011
    氢氟酸 hydrogen fluoride 7664-39-3 FH 20.0063
    氢溴酸 hydrogen bromide 10035-10-6 BrH 80.9119
    硫化氢 hydrogen sulfide 7783-06-4 H2S 34.0819
    三氯化铝 aluminium trichloride 7446-70-0 AlCl3 133.341
    • 1
    • 2
    • 3
    • 4
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    甲烷 pyrographite 74-82-8 C 12.011
    盐酸 hydrogenchloride 7647-01-0 ClH 36.4609
    氢气 hydrogen 1333-74-0 H2 2.01588
    硅烷 silicon 7803-62-5 Si 28.0855
    硫化氢 hydrogen sulfide 7783-06-4 H2S 34.0819
    —— imino radical 13774-92-0 HN 15.0146
    water 7732-18-5 H2O 18.0153
    大鼠1,25-二羟基维生素D(1,25(OH)2D)试剂盒 hydroxyl 3352-57-6 HO 17.0073
    磷化氢 phosphorus 29724-05-8 P 30.9738
    —— selenium 7782-49-2 Se 78.96
    • 1
    • 2
    • 3

反应信息

  • 作为反应物:
    描述:
    乙炔 作用下, 以 gas 为溶剂, 生成 氢氰酸
    参考文献:
    名称:
    在乙炔存在下通过氨光解生成氰化氢和乙炔低聚物:在木星大气化学中的应用
    摘要:
    HCN 是在室温下在乙炔存在下通过氨光解形成的。当温度降低到 178 K 时,HCN 的产率下降了 70%,并形成了两种新的反应产物,乙腈和乙醛亚乙基腙(6)。6 的光解产生乙腈,氢原子引发乙腈分解产生 HCN。氮丙啶是一种预测的反应中间体,在 298 或 178 K 下未检测到。也形成了乙炔的低聚物。傅里叶变换红外光谱表明,在乙炔存在下氨光解形成的低聚物含有 NH 基团,与乙炔直接光解产生的低聚物不同。这些光化学过程对木星、土卫六、土卫六上 HCN 和发色团形成的可能作用
    DOI:
    10.1021/ja00221a033
  • 作为产物:
    描述:
    L-赖氨酸 在 horseradish peroxidase 4-氨基安替比林苯酚 作用下, 生成
    参考文献:
    名称:
    Reaction of (di)amines in the presence of a lysine oxidase and of a reducing agent
    摘要:
    本发明涉及一种方法,用于将一般式(I)中的胺与A-含义2反应,得到一般式(II)或(III)中的化合物,其中B-含义为HO—CH2—R3—或R4—,包括以下步骤:a)将一般式(I)中的至少一个4个基团氧化为酮基,在赖氨酸氧化酶存在下作为催化剂;b)必要时将一般式(I)中的第二个NH2基团与5反应,与a)中产生的酮基反应,通过环化得到烯胺或亚胺;c)将a)中产生的酮基或必要时b)中产生的烯胺或亚胺,分别与还原剂还原为羟甲基基团或一般式(II)中的环二级胺;其中R1为NR5或线性的双价C2-C6碳氢基团,可选择地被CO2H、CO2R6、OH、SH和/或N(R5)2取代,和/或含有非相邻的O、S和/或N原子;R5为H或线性的C1-C6-烷基,R6为线性的Cl-C6-烷基或支链的C3-C6-烷基或C6-C10-芳基,R2为H、CO2H、CO2R6或CN;该方法作为一锅法进行,赖氨酸氧化酶和还原剂同时存在,并且在一般式(I)中A的定义中,R3为双价的C0-C1或C5-C18碳氢基团,可选择地被线性的C1-C6-烷基或支链的C3-C6-烷基、C6-C10-芳基、C4-C10-杂环烷基取代,和/或含有非相邻的O、S和/或N原子,R4为线性的C1-C20碳氢基团,可选择地被CO2H和/或C02R6等官能团取代,和/或含有非相邻的O、S和/或N原子。
    公开号:
    US20040158061A1
  • 作为试剂:
    描述:
    1-(4-azido-2,5-dideoxy-2-fluoro-5-iodo-β-D-arabino-furanosyl)uracil 在 吡啶dipotassium hydrogenphosphate四丁基硫酸氢铵 、 potassium diazodicarboxylate 、 sodium hydride 、 溶剂黄146N,N-二异丙基乙胺间氯过氧苯甲酸N,N'-二环己基碳二亚胺三氟乙酸 作用下, 以 四氢呋喃甲醇二氯甲烷二甲基亚砜 为溶剂, 反应 23.17h, 生成
    参考文献:
    名称:
    一种新型的核苷酸衍生物及其药物组合物和用途
    摘要:
    本发明公开了一种新型的核苷酸类衍生物及其药物组合物和用途,所述核苷酸类衍生物如式(I)所示;该类衍生物可用于制备抗病毒感染的药物。#imgabs0#
    公开号:
    CN117486958A
点击查看最新优质反应信息

文献信息

  • Catalytic Proton Coupled Electron Transfer from Metal Hydrides to Titanocene Amides, Hydrazides and Imides: Determination of Thermodynamic Parameters Relevant to Nitrogen Fixation
    作者:Iraklis Pappas、Paul J. Chirik
    DOI:10.1021/jacs.6b08009
    日期:2016.10.12
    bis(cyclopentadienyl) titanium amides, hydrazides and imides by proton coupled electron transfer (PCET) is described. Twelve different N-H bond dissociation free energies (BDFEs) among the various nitrogen-containing ligands were measured or calculated, and effects of metal oxidation state and N-ligand substituent were determined. Two metal hydride complexes, (η5-C5Me5)(py-Ph)Rh-H (py-Ph = 2-pyridylphenyl
    描述了通过质子耦合电子转移 (PCET) 氢解一系列双(环戊二烯基)钛酰胺、酰肼和酰亚胺中的钛 - 氮键。测量或计算了各种含氮配体之间 12 种不同的 NH 键解离自由能 (BDFE),并确定了金属氧化态和 N-配体取代基的影响。两种金属氢化物络合物,(η5-C5Me5)(py-Ph)Rh-H (py-Ph = 2-吡啶基苯基,[Rh]-H) 和 (η5-C5R5)(CO)3Cr-H ([Cr]RH , R= H, Me) 被评估为正式的 H 原子转移反应性,并因其相对较弱的 MH 键强度但能够激活和裂解分子氢而被选中。尽管具有可比性的 MH BDFE,观察到两种化合物之间不同的反应性,这可以追溯到 MH 键的极大不同酸度和分子的整体氧化还原电位。使用 [Rh]-H,使用 H2 作为化学计量的 H 原子源,从相应的钛 (IV) 配合物完成了氨、甲硅烷基胺和 N,N-二甲基肼的催化合成。本研
  • [EN] PYRROLOTRIAZINONE DERIVATIVES AS PI3K INHIBITORS<br/>[FR] DÉRIVÉS DE PYRROLOTRIAZINONE EN TANT QU'INHIBITEURS DES PI3K
    申请人:ALMIRALL SA
    公开号:WO2014060432A1
    公开(公告)日:2014-04-24
    New pyrrolotriazinone derivatives having the chemical structure of formula (I), are disclosed; as well as process for their preparation, pharmaceutical compositions comprising them and their use in therapy as inhibitors of Phosphoinositide 3-Kinases (PI3Ks)
    新的吡咯三唑酮衍生物具有化学结构式(I),公开;以及它们的制备方法,包括它们的药物组合物和它们作为磷脂酰肌醇3-激酶(PI3Ks)抑制剂在治疗中的应用。
  • Nucleophilic Reactivities of Hydrazines and Amines: The Futile Search for the α-Effect in Hydrazine Reactivities
    作者:Tobias A. Nigst、Anna Antipova、Herbert Mayr
    DOI:10.1021/jo301497g
    日期:2012.9.21
    groups increase the reactivities of the α-position of hydrazines, they decrease the reactivities of the β-position. Despite the 102 times lower reactivities of amines and hydrazines in water than in acetonitrile, the relative reactivities of differently substituted amines and hydrazines are almost identical in the two solvents. In both solvents hydrazine has a reactivity similar to that of methylamine.
    胺,肼,酰肼和羟胺与苯甲酸铵离子和醌甲基化物的反应动力学通过紫外可见光谱法,在乙腈和水中,使用常规光谱仪,定流和激光闪光技术进行了研究。从这些反应的二阶速率常数k 2,根据线性自由能关系log k 2=s N(N + E)确定亲核参数N和s N。尽管甲基增加了肼的α-位置的反应性,但它​​们却降低了β-位置的反应性。尽管10 2胺和肼在水中的反应性比乙腈低两倍,不同取代的胺和肼的相对反应性在两种溶剂中几乎相同。在两种溶剂中,肼的反应性都与甲胺类似。这一观察结果暗示,如果考虑到肼具有两个反应中心,Me取代氨中的一个氢比引入氨基更能增加亲核性。log k 2与相应的平衡常数(log K)或布朗斯台德碱度(p K aH)的关系图未显示相对于烷基胺而言,肼或羟胺的亲核性(α效应)增强。
  • Oxidation of Glycylglycine by KBrO3 in Aqueous Acetic Acid Medium and Comparison with Monomer Glycine: A Kinetic and Mechanistic Study
    作者:Prameela Kethavath、Anjaiah Birla、Srinivas Pabba
    DOI:10.14233/ajchem.2016.19729
    日期:——
    The kinetics of oxidation reactions of dipeptide glycylglycine (GG) by KBrO3 in aqueous acetic acid medium, under the condition [KBrO3] 3] and fractional order dependence in [GG]. The effect of ionic strength and [AcOH] on rate was studied and thermodynamic parameters were also calculated. Michealis-Menten type mechanism was proposed.
    在水合乙酸介质中,KBrO3氧化二肽甘氨酰甘氨酸(GG)的动力学显示,在[KBrO3]条件下为零级依赖,而在[GG]条件下为分数级依赖。研究了离子强度和[AcOH]对反应速率的影响,并计算了热力学参数。提出了迈克尔-门顿类型的反应机制。
  • 12-(N-Methylnitrilium)monocarba-closo-dodecaborate Ylide
    作者:Filip Šembera、Alexander Higelin、Ivana Císařová、Josef Michl
    DOI:10.5562/cca2475
    日期:——
    The syntheses, spectral characterization, and crystal structures of 12-(N-methylnitrilium)monocarba-closo-dodecaborate and 12-(N-methylamidinium)-monocarba-closo-dodecaborate ylides are reported. The carborate anion behaves as an inert and non-conjugating negative charge.
    报道了12-(N-甲基氮化)-单氨基甲酸-十二杂酸酯的合成,光谱表征和晶体结构。硼酸根阴离子表现为惰性和非共轭的负电荷。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
查看更多图谱数据,请前往“摩熵化学”平台
mass
查看更多图谱数据,请前往“摩熵化学”平台
ir
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台