The reaction of enynes with aldehydes in the presence of a catalytic amount of [RhCl(cod)](2)/dppp results in the Pauson-Khand-typereaction without the use of gaseous carbon monoxide to give bicyclic cyclopentenones in high yields (14 examples). Aldehydes serve as a source of carbon monoxide, and their carbonyl moiety is transferred to enynes, resulting in the formation of the carbonylated products
在催化量的 [RhCl(cod)](2)/dppp 存在下,烯炔与醛的反应会导致 Pauson-Khand 型反应,而无需使用气态一氧化碳,以高产率得到双环环戊烯酮 (14例子)。醛作为一氧化碳的来源,它们的羰基部分被转移到烯炔,导致形成羰基化产物。该反应代表了 CO 转移羰基化的第一个例子。
Scope of the Intramolecular Titanocene-Catalyzed Pauson−Khand Type Reaction<sup>1</sup>
作者:Frederick A. Hicks、Natasha M. Kablaoui、Stephen L. Buchwald
DOI:10.1021/ja990682u
日期:1999.6.1
A Pauson−Khandtype conversion of enynes to bicycliccyclopentenones employing the commercially available precatalyst titanocene dicarbonyl is described. This methodology shows excellent functional group tolerance for a group 4 metallocene-catalyzed process. The scope and limitations of this cyclization with respect to 1,6-, 1,7- and 1,8-enynes with a variety of terminal alkyne substituents, chiral
Catalytic cyclocarbonylation reactions using a glyceraldehyde derivative as a carbonyl source are described. The rhodium(I)-catalyzed reaction of enynes with glyceraldehyde acetonide gave bicyclic cyclopentenones as the products. This presents an interesting use of a sugar alcohol derived carbon resource as well as a convenient procedure for the cyclocarbonylation of enynes. rhodium - cyclocarbonylation